Bessis-Moussa-Villani conjecture and generalized Gaussian random variables

Marek Bożejko*
Instytut Matematyczny,
Uniwersytet Wrocławski, Plac Grunwaldzki 2/4, 50-384 Wrocław, Poland
marek.bozejko@math.uni.wroc.pl

December 9, 2007

Abstract

In this paper we give the solution of Bessis-Moussa-Villani conjecture (BMV) conjecture for the generalized Gaussian random variables

\[G(f) = a(f) + a^*(f) , \]

where \(f \) is in the real Hilbert space \(\mathcal{H} \).

The main examples of generalized Gaussian random variables are q-Gaussian random variables, \((-1 \leq q \leq 1)\), related to q-CCR relation and others commutation relations. We will prove that (BMV) conjecture is true for all operators \(A = G(f), B = G(g) \); i.e. we will show that the function

\[F(x) = tr(\exp(A + ixB)) \]

is positive definite function on the real line. The case \(q = 0 \) i.e. when \(G(f) \) are the free Gaussian (Wigner) random variables and the operators \(A \) and \(B \) are free with respect to the vacuum trace was proved by M.Fannes and D.Petz [23].

1 Generalized Gaussian Random Variable.

Generalized Gaussian random variables, \(G(f) \) were introduced in our paper with R.Speicher [16], where the main example was coming from the q-CCR relation for \(q \in [-1, 1] : \)

\[a(f)a^*(g) - qa^*(g)a(f) =< f, g > I, \]

* This work was partially supported by KBN grant no 1 PO3A 013330 and by a Marie Curie Transfer of Knowledge Fellowship of the European Community’s Sixth Framework Programme under contract number MTKD-CT-2004-013389
here f, g are in a real Hilbert space \mathcal{H} and

$$G(f) = a(f) + a^*(f).$$

The others examples of generalized Gaussian random variables were constructed by L. Accardi and M. Bozejko[1], M. Bozejko and M. Guta[9], M. Bozejko and J. Wysoczanski[17, 18], M. Guta and H. Maassen[25, 26], M. Bozejko and H. Yoshida[19], A. Buchholz[20], M. Bozejko M., A. Krystek and L. Wojakowski[10] and recently M. Bozejko M.[8] constructed q-Gaussian random variables for $|q| > 1.$

Let \mathcal{H} be a real Hilbert space. A family of self-adjoint operators $G(f) = G(f)^*$, $f \in \mathcal{H}$ is called Generalized Gaussian random variables or Generalized Brownian Motion (GBM), if there exists a state ε on the von Neumann algebra generated by $G(f)$, $f \in \mathcal{H}$ and a complex valued function $t: \bigcup_{n=1}^{\infty} \mathcal{P}_2(2n) \to \mathbb{C}$, (here $\mathcal{P}_2(2n)$ is the set of 2-partitions of the set $\{1, 2, \ldots , 2n\}$), such that the following generalized Wick formula holds:

$$\varepsilon(G(f_1)\ldots G(f_k)) = \begin{cases} 0 & \text{if } k \text{ is odd} \\ \sum_{V\in\mathcal{P}_2(2n)} t(V) \prod_{(i,j)\in V} <f_i, f_j> & \text{if } k = 2n. \end{cases}$$

If the dimension of a Hilbert space \mathcal{H} is infinite, then the above definition is equivalent to the following (see F. Lehner-II,[32]):

for each orthogonal linear map $O: \mathcal{H} \to \mathcal{H}$ and $f_i \in \mathcal{H}$:

$$\varepsilon(G(f_1)\ldots G(f_k)) = \varepsilon(G(O(f_1))\ldots G(O(f_k))),$$

Typical examples of (GBM) was obtained by R. Speicher and myself[13] in 1991, using q-CCR relations for $-1 \leq q \leq 1$, then putting $G(f) = a(f) + a^*(f)$ and knowing that $a(f)\Omega = 0$ we obtain the following Wick formula:

$$< G(f_1)\ldots G(f_{2n})\Omega, \Omega> = \sum_{V\in\mathcal{P}_2(2n)} q^{cr(V)} \prod_{(i,j)\in V} <f_i, f_j>.$$

Here $cr(V)$ is the number of crossing, which is given by the number of pairs of blocks of V which will cross. To obtain the above Wick formula we need a deformed Fock space $\mathcal{F}_q(\mathcal{H}_C)$ constructed by the completion of the free Fock space

$$\mathcal{F}(\mathcal{H}_C) = \mathbb{C}\Omega \oplus \mathcal{H}_C \oplus \ldots$$
by introducing a new scalar product on $\mathcal{H}_C^\otimes n$ as follows:

For $\xi, \eta \in \mathcal{H}_C^\otimes n$ we define a q-deformed scalar product,

$$< \xi, \eta >_q = < P_q^{(n)} \xi, \eta >,$$

where

$$P_q^{(n)} = \sum_{\pi \in S(n)} q^{cr(\pi)} \pi,$$

and where for a permutation $\pi \in S(n)$,

$$cr(\pi) = \sharp \{(i,j) : 1 \leq i \leq j \leq n, \text{ and } \pi(i) > \pi(j)\}.$$

In the construction of $\mathcal{F}_q(\mathcal{H}_C)$ we need the positivity of the operator $P_q^{(n)}$ for $-1 \leq q \leq 1$, which was done by Bozejko and Speicher in the papers [11,12,13].

2 Generalized Bessis-Moussa-Villani conjecture.

Let (\mathcal{A}, τ) be a von Neumann algebra \mathcal{A} with a finite trace τ. We say that generalised (BMV) conjecture holds, if for all $a = a^*, b = b^*$ in \mathcal{A}, the function

$$F_{a,b}(x) = \tau(\exp(a + ixb))$$

is positive definite on the real line, i.e. there exists a positive, bounded Borel measure μ on the real line such that

$$F_{a,b}(x) = \int_{-\infty}^{\infty} e^{ixs} \mu(ds).$$

In the case of the algebra of all complex nxn matrices $\mathcal{A} = M_n(\mathbb{C})$ and the trace τ is the classical trace, (BMV) conjecture is called $(BMV)_n$.

From the paper of Lieb-Seiringer[33], we know that for a fixed natural number n, $(BMV)_n$-condition is equivalent to the following statement:
$(LS)_n$: For each positive definite matrices $A, B \in M_n(C)$, for all natural m and complex z, the polynomial

$$L_{A,B,m}(z) = Tr[(A + zB)^m]$$

has only non-negative coefficients.

From the last condition it is easy to show that $(LS)_n$ is true for $n = 2$.

The hint for that result is the following: for two positive definite 2x2-complex matrices there exists a basis, in which that matrices have only non-negative entries.

The case $(BMV)_3$ for 3x3 matrices is STILL OPEN!

See more in the recent paper of Ch.Hillar[?].

In this note we show the generalized (BMV) conjecture for all generalized Gaussian random variables by reducing to the case q-Gaussian, where $q = -1$, i.e. the classical canonical anticommutation relation (CAR), in which we have representation of (CAR) relations using Dirac-Pauli matrices.

3 Pauli-Dirac matrices.

We are looking for 2x2-complex self-adjoint matrices Q_1, Q_2 satisfying the following conditions:

(i) $Q_1^2 = Q_1^2 = I, Q_k = Q_k^*, k = 1, 2.$

(ii) $Q_1Q_2 + Q_2Q_1 = O$

and

(iii) $Tr(Q_{j_1}Q_{j_2}...Q_{j_{2n}}) = \sum_{\nu \in P_2(2n)} (-1)^{cr(\nu)} \prod_{(l,m) \in \nu} \delta_{j_l,j_m}.$

One can see that the following matrices satisfying (i)-(iii).

$Q_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

and

$Q_2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$
Hence we have the following well know fact (folklore):

Proposition 3.1. For all real s, x, the function

$$\varphi_s(x) = Tr(exp(s(Q_1 + i x Q_2)))$$

is positive definite on the real line as a function of variable x.

Moreover

$$\varphi_s(x) = \sum_{n=0}^{\infty} \frac{(1-x^2)^n s^{2n}}{(2n)!} = \cosh(s\sqrt{1-x^2}).$$

Proof.

Let $Z(x) = Q_1 + i x Q_2 = \begin{pmatrix} 0 & 1-x \\ 1+x & 0 \end{pmatrix}.$

Hence

$$Z(x)^{2n} = (1-x^2)^n I, \ Tr(Z(x)^{2n+1}) = 0$$

and

$$Tr(Z(x)^{2n}) = (1-x^2)^n ,$$

where Tr is the normalized trace.

By the result of Lieb-Seiringer [33], we obtain that our function φ_s is positive definite.

This finishes the proof.

Remark. One can also show that the function φ_s is of the following form:

$$\varphi_s(x) = \int_{-\infty}^{\infty} e^{ixs} \mu_s(dx),$$

where the measure

$$\mu_s(dx) = \frac{1}{2} (\delta(s) + \delta(-s)) + f_s(x) dx .$$
The density
\[f_s(x) = \frac{I_1(\sqrt{s^2 - x^2})}{\sqrt{s^2 - x^2}}. \]

Here the function
\[I_1(x) = \sum_{k=0}^{\infty} \frac{x^k}{2^k k!(k+1)!} \]
is the modified Bessel function.

Now we are in position to state and proof our main result:

Theorem 3.2. If \(f_1, f_2 \) are in the real Hilbert space \(\mathcal{H} \) and \(G(f_1), G(f_2) \) are generalized Gaussian random variables with respect to the state \(\varepsilon \), then the function
\[F_G(x) = \varepsilon(\exp(G(f_1) + ixG(f_2))) \]
is positive definite on the real line.

Moreover, if \(< f_1, f_2 > = 0 \) and \(\| f_i \| = 1 \), then
\[F_G(x) = \int_{-\infty}^{\infty} \varphi_s(x) d\nu_G(ds), \]
where \(\nu_G \) is the probability distribution of the operator \(G(f) \), \(\| f \| = 1 \) with respect to the state \(\varepsilon \),

i.e.
\[\varepsilon(G(f)^k) = \int_{-\infty}^{\infty} x^k d\nu_G(dx), \]
for all \(k = 0, 1, 2, \ldots \).

Proof. In the first part of the proof, we can assume that
\[\| f_i \| = 1, \text{ and } < f_1, f_2 > = 0. \]

Let us consider the following function on the complex plane \(\mathbb{C} \):
\[\delta_s(z) = \varepsilon((G(f_1) + zG(f_2))^n), z \in \mathbb{C}. \]
By the very definition we have that \(\delta_{2n+1}(z) = 0 \) and \(\delta_{2n}(z) \) is a polynomial of the degree \(2n \).
But for real \(x \) we have \(G(f_1) + xG(f_2) = G(f_1 + xf_2) \).

That last fact for the q-Gaussian case follows from the construction, but for generalized Gaussian field it follows from the Theorem of Guta-Maassen, [26], that each generalized Gaussian field is of the following form \(G(f) = a(f) + a^*(f) \), where a creation and an annihilation operators are \(\mathbb{R} - \text{linear} \).

Therefore for real \(x \) we have:

\[
\delta_{2n}(x) = \varepsilon((G(f_1 + xf_2))^{2n}) = \|f_1 + xf_2\|^{2n} \sum_{\mathcal{V} \in \mathcal{P}_2(2n)} t(\mathcal{V}) = (1 + x^2)^n m_{2n}(d\nu_G),
\]

Since

\[
m_{2n}(d\nu_G) = \sum_{\mathcal{V} \in \mathcal{P}_2(2n)} t(\mathcal{V}) = \int_{-\infty}^{\infty} x^k d\nu_G(dx).
\]

By the analytic property of \(\delta_{2n}(z) \), we have that for real \(x \),

\[
\delta_{2n}(ix) = (1 - x^2)^n m_{2n}(\nu_G).
\]

Therefore

\[
F_G(x) = \sum_{n=0}^{\infty} \frac{(1 - x^2)^n}{(2n)!} m_{2n}(\nu_G) = \int_{-\infty}^{\infty} \sum_{n=0}^{\infty} \frac{(1 - x^2)^n}{(2n)!} s^{2n} d\nu_G(ds) = \int_{-\infty}^{\infty} \cosh(s\sqrt{1 - x^2}) d\nu_G(ds) = \int_{-\infty}^{\infty} \varphi_s(x) d\nu_G(ds).
\]

In more general case, if

\[
\|f_i\| = 1, \text{ and } <f_1, f_2> = \alpha.
\]
then as before we get

$$F_G(x) = \int_{-\infty}^{\infty} \cosh(s\sqrt{1-x^2-2ix\alpha})d\nu_G(ds),$$

and this function is positive definite on the real line.
This can be proved as before by reducing to the CAR relation. We are looking for 2x2 complex, self-adjoint matrices

$$R_1 = aQ_1 + bQ_2, R_2 = cQ_1 + dQ_2,$$
a, b, c and d are real and $a^2 + b^2 = 1, c^2 + d^2 = 1,$ and also $ac + bd = \alpha.$

By the same calculations as before we get:

$$\text{Tr}(\exp(R_1 + ixR_2)) = \sum_{n=0}^{\infty} \frac{(1-x^2-2ix\alpha)^n}{(2n)!} = \cosh(\sqrt{1-x^2-2ix\alpha}).$$

So that function is positive definite on the real line by Lieb-Seiringer [33] result.
This finishes the proof of Theorem 3.2.

Problem 3.3. The following problem seems to be interesting:

For real s and $-1 \leq \alpha \leq 1$, find explicit the positive measure $\mu_{s,\alpha}$ on the real line such that

$$\cosh(s\sqrt{1-x^2-2ix\alpha}) = \int_{-\infty}^{\infty} e^{ixy} \mu_{s,\alpha}(dy) ?$$

Acknowledgments

The Author would like to thank for fantastic working conditions at Graduate School of Information Sciences at Tohoku University during his visit in Sendai in February 2006, where the main part of that paper was done and many thanks also to professor Friedrich Goetze and his group for support and nice conditions at SFB at Bielefeld in September 2006 and October-December 2007. We also would like to thank professors Jacques Faraut, Fumio Hiai and Nobuaki Obata for their comments and references.

References

