One-radius results
for supermedian functions on \mathbb{R}^d, $d \leq 2$

Wolfhard Hansen and Nikolai Nikolov

Abstract

A classical result states that every lower bounded superharmonic function on \mathbb{R}^2 is constant. In this paper the following (stronger) one-circle version is proven. If $f: \mathbb{R}^2 \to (-\infty, \infty]$ is lower semicontinuous, $\liminf_{|x|\to\infty} f(x)/\ln |x| \geq 0$, and, for every $x \in \mathbb{R}^2$, $1/(2\pi) \int_0^{2\pi} f(x + r(x)e^{it}) dt \leq f(x)$, where $r: \mathbb{R}^2 \to (0, \infty)$ is continuous, $\sup_{x \in \mathbb{R}^2} (r(x) - |x|) < \infty$, and $\inf_{x \in \mathbb{R}^2} (r(x) - |x|) = -\infty$, then f is constant.

Moreover, it is shown that, assuming $r \leq c \cdot |\cdot| + M$ on \mathbb{R}^d, $d \leq 2$, and taking averages on $\{y \in \mathbb{R}^d: |y - x| \leq r(x)\}$, such a result of Liouville type holds for supermedian functions if and only if $c \leq c_0$, where $c_0 = 1$, if $d = 2$, whereas $2.50 \leq c_0 \leq 2.51$, if $d = 1$.

2000 Mathematics Subject Classification: 31A05

Keywords: Superharmonic function, supermedian function, Liouville’s theorem, one-circle theorem, one-radius theorem

1 Introduction and results

It is a well-known fact that every lower bounded superharmonic function on \mathbb{R}^2 is constant. We recall that superharmonic functions u on \mathbb{R}^2 are lower semicontinuous functions on \mathbb{R}^2 such that $u > -\infty$, $u \not\equiv \infty$, and, for every circle $S(x, \rho)$ of center $x \in \mathbb{R}^2$ and radius $\rho > 0$, the average $\sigma_{x, \rho}(u)$ of u on $S(x, \rho)$ is at most $u(x)$. In this note, we shall present the following stronger result (where, as usual, we do not distinguish between \mathbb{C} and \mathbb{R}^2).

Theorem 1.1. Let r be a strictly positive real function on \mathbb{R}^2 such that

(i) r is continuous,

(ii) $\limsup_{|x| \to \infty} (r(x) - |x|) < \infty$,

(iii) $\liminf_{|x| \to \infty} (r(x) - |x|) = -\infty$.\(^1\)

\(^1\)Having (i), properties (ii),(iii) are equivalent to $\sup_{x \in \mathbb{R}^2} (r(x) - |x|) < \infty$, $\inf_{x \in \mathbb{R}^2} (r(x) - |x|) = -\infty$, respectively.
Let \(f > -\infty \) be a lower semicontinuous numerical function on \(\mathbb{R}^2 \) such that
\[
\liminf_{|x| \to \infty} \frac{f(x)}{|x| \ln |x|} \geq 0
\]
and \(f \) is \((\sigma, r)\)-supermedian, that is,
\[
\sigma_{x,r}(f) := \frac{1}{2\pi} \int_0^{2\pi} f(x + r e^{it}) \, dt \leq f(x) \quad (x \in \mathbb{R}^2).
\]
Then \(f \) is constant.

Remarks 1.2. 1. Obviously, \(r : \mathbb{R}^2 \to (0, \infty) \) has the properties (i) – (iii), if there exists \(L \in (0, 1) \) such that, for all \(x, y \in \mathbb{R}^2 \),
\[
|r(x) - r(y)| \leq L |x - y|.
\]
However, assuming only that \(|r(x) - r(y)| < |x - y| \) (which implies (i) and (ii)), even the conclusion breaks down. Indeed, if \(f := (1 - |x|)^+ \) and \(r := |x| + 2 + (|x| + 1)^{-1} \), then, for all \(x, y \in \mathbb{R}^2 \), \(\sigma_{x,r}(f) = 0 \leq f(x) \) and the inequality \(|r(x) - r(y)| < |x - y| \) holds, since \((|x| + 1)^{-1} > (|y| + 1)^{-1} \) if \(|x| < |y| \). In fact, none of the properties (i), (ii), (iii) may be dropped (see Section 3). Moreover, since the function \(-\ln(|\cdot|^2 + 1)\) is superharmonic, it is clear that (1.1) cannot be replaced by \(\liminf_{|x| \to \infty} f(x)/|x| \ln |x| > -\infty \).

2. In Theorem 1.1, we may just as well assume that \(f \) does not attain the value \(\infty \) (it suffices to consider the functions \(f_n := \min\{f, n\} \), \(n \in \mathbb{N} \), which are \((\sigma, r)\)-supermedian provided \(f \) is \((\sigma, r)\)-supermedian; if these functions are constant, then \(f := \lim_{n \to \infty} f_n \) is constant).

Let us assume, for a moment, that \(f : \mathbb{R}^2 \to \mathbb{R} \) is continuous and \((\sigma, r)\)-median, that is, such that
\[
\sigma_{x,r}(f) = f(x) \quad (x \in \mathbb{R}^2).
\]
P.C. Fenton [2] showed that \(f \) has to be constant provided \(f \) is lower bounded, \(r \) is continuous and, for some \(x_0 \in \mathbb{R}^2 \), the set \(\{x \in \mathbb{R}^2 : r(x) > |x - x_0|\} \) is bounded, a requirement which may be replaced by the weaker property (ii) (see Remark 2.1). If \(f \) is bounded, then (ii) alone (without any further assumption on \(r \)) is sufficient to conclude that \(f \) is constant ([7, Theorem 1.1], cf. also [5]). On the other hand, there exist \(r : \mathbb{R}^2 \to (0, \infty) \) and a continuous \((\sigma, r)\)-median function \(f \) on \(\mathbb{R}^2 \) such that \(r \leq 4(|\cdot| + 1) \) and \(\min f(\mathbb{R}^2) = 0, \max f(\mathbb{R}^2) = 1 \) (see [5, Proposition 6.1] or [7, Section 5]).

An essential step for the strong version [7, Theorem 1.1] of Liouville’s theorem consists in proving that, assuming (ii), every lower semicontinuous \((\sigma, r)\)-supermedian function \(f \geq 0 \) on \(\mathbb{R}^2 \) attains a minimum. It immediately implies that constant functions are the only lower semicontinuous, lower bounded functions \(f \) on \(\mathbb{R}^2 \) which are \((\lambda, r)\)-supermedian, that is, which have the property that, for every \(x \in \mathbb{R}^2 \), the average \(\lambda_{x,r}(f) \) of \(f \) on the (closed) disk \(B(x, r(x)) \) is at most \(f(x) \) (see [7, Corollary 6.1]). We recall that \((\lambda, r)\)-supermedian functions are \((\sigma, \tilde{r})\)-supermedian for some function \(0 < \tilde{r} \leq r \) (cf. [7, Section 6]). The following result shows that the existence of a minimum fails, if (ii) is replaced by an inequality \(r \leq c |\cdot| + M \), where \(c > 1 \).

Proposition 1.3. Let \(c > 1 \), \(M > 0 \), and \(r(x) := \max\{|x|, M\} \), \(x \in \mathbb{R}^2 \). Then the functions \(r^{-\alpha} \) on \(\mathbb{R}^2 \) are \((\sigma, r)\)-supermedian (and \((\lambda, r)\)-supermedian) provided \(\alpha > 0 \) is sufficiently small.
So, assuming that $r \leq c|\cdot| + M$, where $c, M \in (0, \infty)$, a result of Liouville type for (λ, r)-supermedian functions on \mathbb{R}^2 holds if and only if $c \leq 1$.

On the real line, this will turn out to be strikingly different. By the following proposition, such a result of Liouville type on \mathbb{R} holds if and only if $c \leq c_0$, where $c_0 \in [2.50, 2.51]$ is the unique solution to the equation

$$(t + 1) \ln(t + 1) + (t - 1) \ln(t - 1) = 2t$$

in $(1, \infty)$ (see Section 5).

Proposition 1.4. 1. Let $r : \mathbb{R} \to (0, \infty)$ and $M > 0$ such that

$$r(x) \leq c_0|x| + M \quad \text{for all } x \in \mathbb{R} \setminus [-M, M].$$

Then every lower semicontinuous (λ, r)-supermedian function $f > -\infty$ on \mathbb{R} which is lower bounded (or satisfies $\liminf_{|x| \to \infty} f(x)/\ln |x| \geq 0$) is constant.

2. If, however, $c > c_0$, $M > 0$, and $r := \max(c|\cdot|, M)$, then the function $r^{-\alpha}$ is (λ, r)-supermedian provided $\alpha > 0$ is sufficiently small.

Remark 1.5. As in the 2-dimensional case, the condition $\lim\inf_{|x| \to \infty} f(x)/\ln |x| \geq 0$ cannot be replaced by $\lim\inf_{|x| \to \infty} f(x)/\ln |x| > -\infty$. Indeed, let $r(x) := c_0(|x| + 1) + f(x) := -\ln(|x| + 1)$, $x \in \mathbb{R}$. We recall that $\int_0^t f(s) \, ds = t - (t + 1) \ln(t + 1)$, $t \geq 0$. If $x \geq 0$, then

$$a := (c_0 + 1)(x + 1) = x + r(x) + 1,$$

$$b := (c_0 - 1)(x + 1) < r(x) - x + 1 = |x - r(x)| + 1,$$

and hence

$$\lambda_{x,r(x)}(f) < 1 - \frac{1}{2c_0(x + 1)}(a \ln a + b \ln b) = f(x).$$

By symmetry, $\lambda_{x,r(x)}(f) < f(x)$ holds as well if $x < 0$.

Finally, let us recall that every bounded harmonic function on \mathbb{R}^d, $d \geq 1$, is constant. Hence the results of Liouville type, which we discussed until now, are special cases of one-radius results for harmonic functions on open sets U. The trivial requirement that r be at most the distance to U^c, if $U \neq \mathbb{R}^d$, implies the existence of a real $M > 0$ such that

$$r \leq |\cdot| + M$$

(which may justify considering (1.5) as a natural assumption on r in the case $U = \mathbb{R}^d$).

One radius-results for harmonic functions have a long history (see the survey papers [11, 3] and the references therein). If U is an arbitrary open set in \mathbb{R}^d, then every continuous (λ, r)-median functions $f : U \to \mathbb{R}$ admitting a (sub)harmonic minorant and a (super)harmonic majorant is harmonic (provided (1.5) holds, if $U = \mathbb{R}^d$).

Let us now return to continuous bounded (σ, r)-median functions. If $d = 1$, the corresponding result fails almost trivially both for \mathbb{R} and $(-1, 1)$ (in the first case consider $f(x) := \sin x$ and $r(x) := 2\pi$, for the interval see e.g. [1, Section IV.3, cf. also [9]). We already mentioned the positive result for $U = \mathbb{R}^2$. On the unit disk, however, there exists a continuous function $0 \leq f \leq 1$ having the one-circle property which is not harmonic (see [8] and [6]). The corresponding general problems for \mathbb{R}^d, $d \geq 3$, are unsolved, both for the open unit ball and the entire space (if, however, r is Lipschitz with constant $L \in (0, 1)$, the answer is positive [10, Theorem 2]).
2 Proof of Theorem 1.1

Let \(f: \mathbb{R}^2 \rightarrow \mathbb{R} \) be lower semicontinuous such that (1.1) holds and \(f \) is \((\sigma, r)\)-supermedian, where \(r: \mathbb{R}^2 \rightarrow (0, \infty) \) satisfies (i), (ii), and (iii). For all \(x \in \mathbb{R}^2 \) and \(\rho > 0 \), let

\[
B(x, \rho) := \{ y \in \mathbb{R}^2 : |y - x| \leq \rho \} \quad \text{and} \quad S(x, \rho) := \{ y \in \mathbb{R}^2 : |y - x| = \rho \}.
\]

By (ii), there is a real \(M > 0 \) such that

\[
r(x) \leq |x| + M \quad \text{for all} \quad x \in B(0, M)^c.
\]

If \(f \) is lower bounded, then, by [5, Proposition 2.1] (see also [7]),

\[
(2.1) \quad f(x_0) \leq f \quad \text{for some} \quad x_0 \in B(0, M + 2).
\]

In fact, a short look at the proof for (2.1) reveals that it is valid as well under our weaker assumption (1.1). So we may suppose without loss of generality that \(f(0) = 0 \) and \(f \geq 0 \) (we can replace \(f \) by the function \(x \mapsto f(x_0 + x) - f(x_0) \)). Since \(f \) is lower semicontinuous, we know, by (1.2), that

\[
(2.2) \quad f = 0 \quad \text{on} \quad S(x, r(x)), \quad \text{whenever} \quad x \in \mathbb{R}^2 \quad \text{such that} \quad f(x) = 0.
\]

Let us use the technique developed in [2]. We define an increasing sequence \((\alpha_n)\) of continuous real functions on the unit circle \(S := S(0, 1) \) by \(\alpha_0 := r(0) \) and

\[
\alpha_n(u) := \alpha_{n-1}(u) + r(\alpha_{n-1}(u))u \quad (n \in \mathbb{N}).
\]

By induction, we conclude from (2.2) that, for all \(u \in S \) and \(n \in \mathbb{N} \),

\[
(2.3) \quad f(\alpha_n(u)) = 0.
\]

Since \(r \) is continuous and strictly positive, we obtain immediately that \(\lim \alpha_n = \infty \). So there exists \(n \in \mathbb{N} \) such that

\[
\alpha_n > M \quad \text{on} \quad S.
\]

For the moment, let us fix \(u \in S \). We claim that

\[
(2.4) \quad f(\alpha u) = 0 \quad \text{for every} \quad \alpha \geq \alpha_n(u).
\]

Indeed, suppose that (2.4) does not hold. Then there exists a maximal real \(a \) such that \(a \geq \alpha_n(u) \) and \(f(\alpha u) = 0 \) for every \(\alpha \in [\alpha_n(u), a] \). We may join the points \(y_0 := au \) and \(y_1 := -\alpha_n(-u)u \) continuously by an arc \(\gamma : [0, 1] \rightarrow \mathbb{R}^2 \) contained in the set

\[
\{ \alpha u : a \geq \alpha \geq \alpha_n(u) \} \cup \{ \alpha_n(v) v : v \in S \}.
\]

In particular, \(f \circ \gamma = 0 \) by (2.3). Fix \(0 < \beta \leq r(y_0) \) and let \(z := y_0 + \beta u \) so that \(|z - y_0| \leq r(y_0) \). Clearly, \(|z - y_1| \geq r(y_1) \), since the origin is contained in the line segment from \(y_1 \) to \(y_0 \), \(r(y_1) \leq |y_1| + M \), and \(a + \beta \geq \alpha_n(u) > M \). By continuity of \(r \), there exists \(s \in [0, 1] \) such that \(|z - \gamma(s)| = r(\gamma(s)) \). Since \(f(\gamma(s)) = 0 \), we conclude by (2.2) that \(f(z) = 0 \). Thus \(a \geq a + r(y_0) \), a contradiction proving (2.4).

4
Fixing $R > 0$ such that $\alpha_n \leq R$ on S, we therefore know that $f = 0$ on $\mathbb{R}^2 \setminus B(0, R)$. Since $\liminf_{|x| \to \infty} (r(x) - |x|) = -\infty$, there exists $x \in \mathbb{R}^2$ such that $|x| - r(x) > R$, and hence

$$f = 0 \quad \text{on } B(x, r(x)).$$

Suppose that there is a point $y \in \mathbb{R}^2$ such that $f(y) > 0$. We define

$$t := \sup \{s \in [0, 1]: f(sx + (1 - s)y) > 0\} \quad \text{and} \quad z := tx + (1 - t)y.$$

Since $r(z) > 0$, there exists a point $\tilde{y} \in [y, z]$ such that $|\tilde{y} - z| < r(z)$ and $f(\tilde{y}) > 0$. By (2.6), $|\tilde{y} - x| > r(x)$. By continuity of r, we conclude that there exists $\tilde{z} \in (z, x)$ such that $|\tilde{y} - \tilde{z}| = r(\tilde{z})$. So $f(\tilde{z}) > 0$, by (2.2). However, by definition of z, $f = 0$ on (z, x). Thus there is no point $y \in \mathbb{R}^2$ such that $f(y) > 0$, that is, f is identically zero, and the proof of Theorem 1.2 is finished.

Remark 2.1. If f is even continuous and (σ, r)-median, then (iii) is not needed to conclude that f is constant.

Indeed, it suffices to observe that (iii) has not been used to obtain that $f = \inf f(\mathbb{R}^2)$ outside a compact set, and hence $\gamma := \sup f(\mathbb{R}^2) < \infty$. Then, just using (i) and (ii), we get as well that $\gamma - f = \inf(\gamma - f)(\mathbb{R}^2)$ outside a compact set, that is, $f = \sup f(\mathbb{R}^2)$ outside a compact set. Thus $\inf f(\mathbb{R}^2) = \sup f(\mathbb{R}^2)$, f is constant.

3 Examples

Simple examples show that a continuous bounded (σ, r)-supermedian function f on \mathbb{R}^2 may be non-constant, if any of the properties (i), (ii), or (iii) of r is violated.

1. Let $f := (1 - |x|)^+$, $x \in \mathbb{R}^2$. Taking $r(x) := 3$, if $|x| < 2$, and $r(x) := 1$, if $|x| \geq 2$, we observe that, of course, property (i), that is, the continuity of r, cannot be omitted (or replaced by lower semicontinuity). Considering $r := |x| + 2 + (|x| + 1)^{-1}$ we already noted in Remark 1.2.1 that (iii) cannot be dropped (of course, for this purpose, it would be sufficient to take $r(x) := |x| + 2$).

2. Finally, let us prove that the conclusion of Theorem 1.1 fails, if property (ii) is omitted. For $x \in \mathbb{R}^2$, let

$$f(x) := \min \{1, |x_1|^{-1}\} \quad \text{and} \quad r(x) := 6 \max \{1, x_1^2\}.$$

Clearly, $0 \leq f \leq 1$, f and r are continuous functions, and r satisfies (iii), since $r(0, t) = 6$ for every $t \in \mathbb{R}$. To prove that (1.2) holds, we fix $x \in \mathbb{R}^2$ and define

$$a := \max \{|x_1|, 1\}, \quad A := \{y \in \mathbb{R}^2: |y_1| \leq 2a\}.$$

Then $f(x) = a^{-1}$. We shall see that

$$\sigma_{x, r(x)}(A) \leq a^{-1}/2$$

and hence

$$\sigma_{x, r(x)}(f) \leq \sigma_{x, r(x)}(A) + \sup f(\mathbb{R}^2 \setminus A) \leq a^{-1}/2 + a^{-1}/2 = f(x).$$

5
To prove (3.1) let α denote the maximal angle between the x_2-axis and the lines connecting x with one of the four points $y \in S(x, r(x))$ satisfying $|y_1| = 2a$. Then

$$\sigma_{x, r(x)}(A) \leq \frac{4\alpha}{2\pi} = \frac{2}{\pi} \alpha \leq \frac{3a}{r(x)}.$$

If $|x_1| \leq 1$, then $a = 1$, $r(x) = 6$, and hence $3a/r(x) = 1/2 = 1/(2a)$. If $|x_1| > 1$, then $a = |x_1|$, $r(x) = 6|x_1|^2$, and hence $3a/r(x) = 1/(2|x_1|) = 1/(2a)$. Thus (3.1) holds.

A closer look would reveal that f is \tilde{r}-superharmonic with respect to a continuous function $0 < \tilde{r} \leq r$ satisfying $\tilde{r}(x) = \tilde{r}(|x_1|, 0)$ and

$$(3.2) \quad \lim_{t \to \infty} \frac{\tilde{r}(t, 0)}{t \ln t} = \frac{2}{\pi}.$$

This follows from the fact that, given $t \geq 1$ and $k \in \mathbb{N}$, the point $x := (t, 0)$ and the set $A := \{y \in \mathbb{R}^2 : |y_1| \leq kt\}$ satisfy

$$\int_{\mathbb{R}^2 \setminus A} f \, d\sigma_{x, \rho} \leq \sup f(\mathbb{R}^2 \setminus A) \leq \frac{1}{k} f(x) \quad \text{for every } \rho > 0,$$

and, for large ρ,

$$\int_A f \, d\sigma_{x, \rho} \sim \frac{1}{2\pi \rho} \int_0^{kt} \frac{1}{\tau} \, d\tau = \frac{2 \ln(kt)}{\pi \rho} \sim \frac{2}{\pi} \cdot \frac{t \ln t}{\rho} f(x)$$

(which, incidentally, shows that the limit behavior in (3.2) is optimal for our function f).

4 Proof of Proposition 1.3

Let $c > 1$, $M > 0$, and $r := \max\{c \cdot |\cdot|, M\}$ so that, for every $\alpha > 0$,

$$r^{-\alpha}(x) = \min\{|cx|^{-\alpha}, M^{-\alpha}\}, \quad x \in \mathbb{R}^2.$$

We define

$$I(\alpha) := \frac{1}{2\pi} \int_0^{2\pi} |1 + ce^{it}|^{-\alpha} \, dt, \quad \alpha \geq 0.$$

Then $I(0) = 1$ and

$$I'(0) = -\frac{1}{2\pi} \int_0^{2\pi} \ln |1 + ce^{it}| \, dt = -\ln c < 0.$$

So there exists $\alpha_0 > 0$ such that $I < 1$ on $[0, \alpha_0]$. Let us fix $\alpha \in (0, \alpha_0]$ and $x \in \mathbb{R}^2$. If $c|x| > M$, then $r(x) = c|x|$ and hence

$$\sigma_{x, r(x)}(r^{-\alpha}) \leq \sigma_{x, r(x)}(c^{-\alpha}|\cdot|^{-\alpha}) = c^{-\alpha} \frac{1}{2\pi} \int_0^{2\pi} |x + c|x|e^{it}|^{-\alpha} \, dt = |cx|^{-\alpha} I(\alpha) < r^{-\alpha}(x).$$

If $c|x| \leq M$, then $r(x) = M$, and hence $\sigma_{x, r(x)}(r^{-\alpha}) \leq M^{-\alpha} = r^{-\alpha}(x)$. Thus $r^{-\alpha}$ is (σ, r)-supermedian.

Since $\lambda_{x, \rho} = 2\rho^{-2} \int_0^{N} \sigma_{x, s} \, ds$ (and $\int_0^{2\pi} \ln |1 + ce^{is}| \, ds = 2\pi \ln 1 = 0$, if $s \in (0, 1)$), we obtain similarly that $r^{-\alpha}$ is (λ, r)-supermedian provided $\alpha > 0$ is sufficiently small.
5 Proof of Proposition 1.4

Let us define
\[\psi(t) := (t + 1) \ln(t + 1) + (t - 1) \ln(t - 1) - 2t, \quad 1 < t < \infty. \]

Then \(\psi \) is continuous, \(\lim_{t \to 1} \psi(t) = 2 \ln 2 - 2 < 0 \), \(\lim_{t \to \infty} \psi(t) = \infty \). Moreover,
\[\psi'(t) = \ln(t + 1) + \ln(t - 1) = \ln(t^2 - 1), \]

hence \(\psi \) is strictly decreasing on \((0, \sqrt{2})\) and strictly increasing on \((\sqrt{2}, \infty)\). So there exists \(c_0 \in (1, \infty) \) such that \(\psi(c_0) = 0 \),
\[\psi < 0 \text{ on } (1, c_0), \quad \text{and} \quad \psi > 0 \text{ on } (c_0, \infty). \]

In fact, \(2, 50 < c_0 < 2, 51 \) (since \(\psi(2.50) < 0 \) and \(\psi(2.51) > 0 \)).

1. Let \(r : \mathbb{R} \to (0, \infty) \) and \(M > 0 \) such that
\[r(x) \leq c_0 |x| + M \quad \text{for all } x \in \mathbb{R} \setminus [-M, M]. \]

Let \(\varphi := \ln^+ (|x| - M) \) (so that \(\varphi(x) = 0 \), if \(-(M + 1) \leq x \leq M + 1\)). We claim that there exists \(\tilde{M} > 0 \) such that, for every \(x \in \mathbb{R} \setminus [\tilde{M}, -\tilde{M}] \),
\[\lambda_{x, r(x)}(\varphi) \leq \varphi(x). \tag{5.1} \]

Since \(\lim_{x \to -\infty} (x/M) \ln(1 - (M/x)) = -\ln' 1 = -1 \), there exists \(\tilde{M} \geq 1 + c_0 + 2M \) such that
\[M \ln(x - M) + c_0 x \ln \frac{x - M}{x} - 1 > 0 \quad \text{for every } x > \tilde{M}. \tag{5.2} \]

For a while, let us fix \(x \in \mathbb{R} \setminus [-\tilde{M}, \tilde{M}] \). To prove (5.1) we may assume, by symmetry, that \(x \) is positive. Let \(y \in (0, c_0 + M) \). If \(x - y \geq M + 1 \), then
\[\varphi(x - y) + \varphi(x + y) \leq 2 \varphi(x), \tag{5.3} \]

since \(\varphi \) is concave on \((M + 1, \infty)\). If \(M + 1 > x - y \geq -(M + 1) \), then (5.3) holds, since \(\varphi(x - y) = 0 \) and \(x + y - M \leq x(1 + c_0) \leq (x - M)^2 \). Therefore (5.1) holds, if \(x - r(x) \geq -(M + 1) \).

Let us assume next that \(x - r(x) < -(M + 1) \). Then \(t := (r(x) - M)/x \in (1, c_0] \),
\[\int_0^{r(x) \pm x} \varphi(s) \, ds = \int_{M+1}^{(t \pm 1)x + M} \varphi(s) \, ds \]
\[= \int_1^{(t \pm 1)x} \ln s \, ds = (t \pm 1)x \ln[(t \pm 1)x] - (t \pm 1)x + 1. \]

Since \(\psi(t) \leq \psi(c_0) = 0 \), we hence see that
\[\int_{x-r(x)}^{x+r(x)} \varphi(s) \, ds = \psi(t)x + 2tx \ln x + 2 \leq 2tx \ln x + 2, \]
that is, \(r(x)\lambda_{x,r(x)}(\varphi) \leq tx \ln x + 1 \). Thus

\[
r(x)(\varphi(x) - \lambda_{x,r(x)}(\varphi)) \geq (tx + M) \ln(x - M) - (tx \ln x + 1) = M \ln(x - M) + tx \ln \frac{x - M}{x} - 1,
\]

where the right side is positive by (5.2), since \(t \leq c_0 \). This finishes the proof of (5.1).

Now let \(f > -\infty \) be a lower semicontinuous \((\lambda, r)\)-supermedian function on \(\mathbb{R} \) such that \(\liminf_{|x| \to \infty} f(x)/\ln |x| \geq 0 \). To prove that \(f \) is constant, we use ideas from [4] and [7]. There exists \(x_0 \in [-\hat{M}, \hat{M}] \) such that

\[
f(x_0) = \inf f([-\hat{M}, \hat{M}]).
\]

We intend to show that \(f \geq f(x_0) \) on \(\mathbb{R} \). Then the lower semicontinuity of \(f \) and the inequalities \(\lambda_{x,r(x)}(f) \leq f(x) \), \(x \in \mathbb{R} \), will imply that the set \(A := \{ x \in \mathbb{R} : f(x) = f(x_0) \} \) is both closed and open, hence \(A = \mathbb{R} \), \(f = f(x_0) \).

Fixing \(\varepsilon > 0 \), it suffices to prove that

\[
\tilde{f} := f + \varepsilon \varphi \geq f(x_0).
\]

Obviously, \(\tilde{f} \) is lower semicontinuous, lower bounded, and \(\lim_{|x| \to \infty} \tilde{f}(x) = \infty \). Therefore \(\tilde{f} \) attains a minimum on \(\mathbb{R} \), and the non-empty set

\[
\tilde{A} := \{ x \in \mathbb{R} : \tilde{f}(x) = \inf \tilde{f}(\mathbb{R}) \}
\]

is closed. Let \(z \in \tilde{A} \) with minimal absolute value. If \(|z| > \hat{M} \), then \(\lambda_{z,r(z)}(\tilde{f}) \leq \tilde{f}(z) \), and hence \([z - r(z), z + r(z)] \subseteq \tilde{A} \). This is impossible, by our choice of \(z \). Thus \(z \in [-\hat{M}, \hat{M}] \), and \(\tilde{f} \geq \tilde{f}(z) \geq f(z) \geq f(x_0) \).

2. Finally, let \(c > c_0, M > 0 \), and \(r := \max(c, |\cdot|, M) \). We have to show that the function \(r^{-\alpha} \) is \((\lambda, r)\)-supermedian provided \(\alpha > 0 \) is sufficiently small. To that end we define

\[
\Psi(\beta) := (c + 1)^\beta + (c - 1)^\beta - 2\beta c, \quad 0 < \beta < \infty.
\]

Then \(\Psi'(\beta) = (c + 1)^\beta \ln(c + 1) + (c - 1)^\beta \ln(c - 1) - 2c \). In particular, \(\Psi'(1) = \psi(c) > 0 \). So there exists \(\alpha \in (0, 1) \) such that \(\Psi(1 - \alpha) < 0 \).

Let us now fix \(x \in \mathbb{R} \). If \(c|x| \leq M \), then \(r(x) = M \), and hence \(\lambda_{x,r(x)}(r^{-\alpha}) \leq M^{-\alpha} = r^{-\alpha}(x) \). So let us assume that \(c|x| < M \) and hence \(r(x) = c|x| \). Then

\[
\int_{x-r(x)}^{x+r(x)} |s|^{-\alpha} ds = \frac{1}{1-\alpha} |x|^{1-\alpha} ((c + 1)^{1-\alpha} + (c - 1)^{1-\alpha}) \quad \text{and} \quad 2r(x)|x|^{-\alpha} = 2c|x|^{1-\alpha}.
\]

Since \(\Psi(1 - \alpha) < 0 \), we conclude that \(\lambda_{x,r(x)}(|\cdot|^{-\alpha}) \leq |x|^{-\alpha} \) and hence

\[
\lambda_{x,r(x)}(r^{-\alpha}) \leq \lambda_{x,r(x)}(c^{-\alpha} |\cdot|^{-\alpha}) \leq c|x|^{-\alpha} = r^{-\alpha}(x).
\]

Thus \(r^{-\alpha} \) is \((\lambda, r)\)-supermedian.

Remark 5.1. If even \(r \leq c \cdot |\cdot| + M \) for some \(c \in (0, c_0) \), then the conclusion in (1) of Proposition 1.4 is still valid, if the condition \(\liminf_{|x| \to \infty} f(x)/\ln |x| \geq 0 \) is replaced by the weaker assumption \(\liminf_{|x| \to \infty} f(x)/\ln |x| > -\infty \). Indeed, by means of the function \(\Psi \), we may then prove that, for some \(\alpha > 0 \), the function \(|\cdot|^\alpha \) (which will replace \(\varphi \)) is \((\lambda, r)\)-supermedian.
References

Wolfhard Hansen, Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany, e-mail: hansen@math.uni-bielefeld.de
Nikolai Nikolov, Institute of Mathematics, Acad. G. Bonchev str., block 8, 1113 Sofia, Bulgaria, e-mail: nik@math.bas.bg