ON THE DISTRIBUTION OF COMPLEX ROOTS OF RANDOM POLYNOMIALS WITH HEAVY-TAILED COEFFICIENTS

F. GÖTZE, D. ZAPOROZHETS

Abstract. Consider a random polynomial $G_n(z) = \xi_n z^n + \cdots + \xi_1 z + \xi_0$ with i.i.d. complex-valued coefficients. Suppose that the distribution of $\log(1 + \log(1 + |\xi_0|))$ has a slowly varying tail. Then the distribution of the complex roots of G_n concentrates in probability, as $n \to \infty$, to two centered circles and is uniform in the argument as $n \to \infty$. The radii of the circles are $|\xi_0/\xi_\tau|$ and $|\xi_\tau/\xi_n|^{1/(n-\tau)}$, where ξ_τ denotes the coefficient with the maximum modulus.

Key words and concepts: roots of a random polynomial, roots concentration, heavy-tailed coefficients

1. Introduction

Consider the sequence of random polynomials

$G_n(z) = \xi_n z^n + \xi_{n-1} z^{n-1} + \cdots + \xi_1 z + \xi_0,$

where $\xi_0, \xi_1, \ldots, \xi_n, \ldots$ are i.i.d. real- or complex-valued random variables. We would like to investigate the behaviour of the complex roots of G_n.

The first results in this questions are due to Hammersley [2]. He derived an explicit formula for the r–point correlation function ($1 \leq r \leq n$) of the roots of G_n when the coefficients have an arbitrary joint distribution.

Shparo and Shur [9] showed that under quite general assumptions the roots of G_n concentrate near the unit circle as n tends to ∞ with asymptotically uniform distribution of the argument. More precisely, denote by $R_n(a, b)$ respectively $S_n(\alpha, \beta)$ the number of the roots of G_n contained in the ring $\{z \in \mathbb{C} : a \leq |z| \leq b\}$ respectively the sector $\{z \in \mathbb{C} : \alpha \leq \arg z \leq \beta\}$. For $\varepsilon > 0, m \in \mathbb{Z}^+$ consider the function

$f(t) = \left[\frac{\log^+ \log^+ \ldots \log^+ t}{m+1} \right]^{1+\varepsilon} \cdot \prod_{k=1}^{m} \log^+ \log^+ \ldots \log^+ t,$

where $\log^+ s = \max(1, \log s)$. If for some $\varepsilon > 0, m \in \mathbb{Z}^+$

$\mathbb{E} f(|\xi_0|) < \infty,$

then for any $\delta \in (0, 1)$ and any α, β such that $-\pi \leq \alpha < \beta \leq \pi$

$\frac{1}{n} R_n(1 - \delta, 1 + \delta) \xrightarrow{P} 1, \quad n \to \infty,$

$\frac{1}{n} S_n(\alpha, \beta) \xrightarrow{P} \frac{\beta - \alpha}{2\pi}, \quad n \to \infty.$

Partially supported by RFBR (10-01-00242), RFBR-DFG (09-0191331), NSh-4472.2010.1, and CRC 701 “Spectral Structures and Topological Methods in Mathematics”.
Ibragimov and Zaporozhets [4] improved this result as follows. They showed that
\[P \left\{ \frac{1}{n} R_n(1-\delta, 1+\delta) \to 1 \right\} = 1 \]
holds for any \(\delta \in (0, 1) \) if and only if
\[E \log(1 + |\xi_0|) < \infty. \]
They also proved that for any \(\alpha, \beta \) such that \(-\pi \leq \alpha < \beta \leq \pi \)
\[P \left\{ \frac{1}{n} S_n(\alpha, \beta) \to \frac{\beta - \alpha}{2\pi} \right\} = 1 \]
holds for any distribution of \(\xi_0 \).
Shepp and Vanderbei [8] considered real-valued standard Gaussian coefficients and proved that
\[\frac{1}{n} \mathbb{E} R_n(e^{-\delta/n}, e^{\delta/n}) \to \frac{1 + e^{-2\delta}}{1 - e^{-2\delta}} \frac{1}{\delta}, \quad n \to \infty \]
for any \(\delta > 0 \). Ibragimov and Zeitouni [3] extended this relation to the case of arbitrary i.i.d. coefficients from the domain of attraction of an \(\alpha \)-stable law:
\begin{equation}
\frac{1}{n} \mathbb{E} R_n(e^{-\delta/n}, e^{\delta/n}) \to \frac{1 + e^{-\alpha\delta}}{1 - e^{-\alpha\delta}} - \frac{2}{\alpha\delta}, \quad n \to \infty.
\end{equation}
It is interesting to consider the limit case when \(\alpha \to 0 \). Then
\[\frac{1 + e^{-\alpha\delta}}{1 - e^{-\alpha\delta}} - \frac{2}{\alpha\delta} \to 0 \]
and a natural assumption for the coefficient distribution would be a slowly varying tail. In this case (1) becomes
\[\frac{1}{n} \mathbb{E} R_n(e^{-\delta/n}, e^{\delta/n}) \to 0, \quad n \to \infty. \]
This result (in a slightly stronger form) is proved in Theorem 1.

In contrast to the concentration near the unit circumference, there exist random polynomials with quite a different asymptotic behavior of complex roots. Zaporozhets [10] constructed a random polynomial with i.i.d. coefficients such that in average \(n/2 + o(1) \) of the complex roots concentrate near the origin and the same number tends to infinity as \(n \to \infty \) (moreover, the expected number of real roots of this polynomial is at most 9 for all \(n \)). Theorem 2 generalizes this result.

The paper is organized as follows. In Sect. 2 we formulate our results. In Sect. 3 we prove some auxiliary lemmas. The theorems are proved in Sect. 4.

By \(\sum_j \) we always denote a summation taken over all \(j \) from \(\{0, 1, \ldots, n\} \). If conditions are stated for the summation, they are applied to this default range \(j \) from \(\{0, 1, \ldots, n\} \).

2. Results

For the sake of simplicity, we assume that \(P \{ \xi_0 = 0 \} = 0 \). To treat the general case it is enough to study in the same way the behavior of the roots on the sets \(\{ \alpha_n = k, \beta_n = l \} \), where
\[\alpha_n = \max\{j = 0, \ldots, n : \xi_j \neq 0\}, \quad \beta_n = \min\{j = 0, \ldots, n : \xi_j \neq 0\}. \]
Theorem 1. If the distribution of $|\xi_0|$ has a slowly varying tail, then for any $\delta > 0$
\[P\{R_n(e^{-\delta/n}, e^{\delta/n}) = 0\} \rightarrow 1, \quad n \rightarrow \infty. \]
Consider the index $\tau = \tau_n \in \{0, \ldots, n\}$ such that $|\xi_\tau| \geq |\xi_j|$ for $j = 0, \ldots, n$. If it is not unique, we take the minimum one. Let $\omega_1, \ldots, \omega_n$ be the complex roots of the system of equations
\[z^\tau + \xi_0 z^{-\tau} = 0, \quad z^{n-\tau} + \xi_n z^{\tau} = 0. \]

Theorem 2. If the distribution of $\log(1 + \log(1 + |\xi_0|))$ has a slowly varying tail, then for any $\varepsilon \in (0, 1)$
\[P\{F_n(\varepsilon)\} \rightarrow 1, \quad n \rightarrow \infty, \]
where $F_n(\varepsilon)$ denotes the event that it is possible to enumerate the roots z_1, \ldots, z_n of G_n in such a way that
\[|z_k - w_k| < \varepsilon |w_k| \]
for $k = 1, \ldots, n$.

3. Auxiliary lemmas

First we need to formulate and prove some auxiliary results. The following result is due to Pellet.

Lemma 1. Let $g(z) = \sum_j a_j z^j$ be a polynomial of degree n. Suppose for some $k = 1, \ldots, n - 1$ the associated polynomial
\[\tilde{g}(z) = \sum_{j \neq k} |a_j| z^j - |a_k| z^k \]
has exactly two positive roots R and r, $R > r$. Then g has exactly k roots inside the circle $\{ z \in \mathbb{C} : |z| = r \}$ and $n - k$ roots outside the circle $\{ z \in \mathbb{C} : |z| = R \}$.
Proof. See, e.g., [7].

The next lemma is due to Ostrowski.

Lemma 2. Let B be a closed region in the complex plane, the boundary of which consists of a finite number of regular arcs; let the functions $f(z), h(z)$ be regular on B. Assume that for all values of the real parameter t, running in the interval $a \leq t \leq b$, the function $f(z) + t \cdot h(z)$ is non zero on the boundary of B. Then the number of the roots of $f(z) + t \cdot h(z)$ inside B is independent of t for $a \leq t \leq b$.
Proof. See [6].

Lemma 3. Consider a monic polynomial of degree n with complex coefficient $g(z) = \sum_j a_j z^j$ such that $a_n = 1, a_0 \neq 0$. Fix some $k = 1, \ldots, n - 1$ and denote by w_1, \ldots, w_{n-k} the roots of the equation $z^{n-k} + a_k = 0$. Put
\[A_k = \sum_{j \neq k} |a_j|. \]
If for some $\varepsilon > 0$
\[A_k \leq (1 - \frac{\varepsilon}{n}) \left(\frac{\varepsilon}{n + \varepsilon} \right)^{\frac{n-k}{(n-k)^{1/(n-k)}}}, \]
then \(g \) has exactly \(n - k \) roots \(z_1, \ldots, z_{n-k} \) outside the unit circumference and it is possible to enumerate these roots in such a way that

\[
|z_j - w_j| \leq \frac{\varepsilon}{n}|w_j|
\]

for \(j = 1, \ldots, n-k \).

Proof. We will prove a stronger version of the Lemma 3. Namely, we will show that the statement holds for the family of polynomials

\[
g_t(z) = z^n + a_k z^k + t \sum_{j \neq k, n} a_j z^j, \quad 0 \leq t \leq 1.
\]

In particular,

\[
g_0(z) = z^n + a_k z^k, \quad g_1(z) = g(z).
\]

Let us use Lemma 1 to estimate absolute values of the roots of \(g_t \). Consider the associated polynomial

\[
\tilde{g}_t(z) = z^n - |a_k| z^k + t \sum_{j \neq k, n} |a_j| z^j.
\]

We have \(\tilde{g}_t(0), \tilde{g}_t(\infty) > 0 \) and it follows from (2) that \(\tilde{g}_t(1) < 1 \). Also, by Descarote’s rule of signs, \(\tilde{g}_t \) has at most 2 positive roots. Therefore \(\tilde{g}_t \) has exactly 2 positive roots \(r_t \) and \(R_t \) such that

\[
0 < r_t < 1 < R_t.
\]

Now let us show that

\[
(1 - \frac{\varepsilon}{n}) |a_k|^{1/(n-k)} \leq R_t \leq |a_k|^{1/(n-k)}.
\]

Since \(\tilde{g}_t(R_t) = 0 \), we have

\[
R_t^{n-k} + t \sum_{j \neq k, n} |a_j| R_j^{n-k} = |a_k|,
\]

which proves the right side of (4).

We prove the left side by contradiction. Suppose, on the contrary, that

\[
R_t < \left(1 - \frac{\varepsilon}{n}\right) |a_k|^{1/(n-k)}.
\]

Then

\[
R_t^{n-k} + t \sum_{j \neq k, n} |a_j| R_j^{n-k} < \left(1 - \frac{\varepsilon}{n}\right)^{n-k} |a_k| + A_k R_t^{n-k-1}
\]

\[
\leq \left(1 - \frac{\varepsilon}{n}\right)^{n-k} |a_k| + A_k \left(1 - \frac{\varepsilon}{n}\right)^{n-k-1} |a_k|^{1 - \frac{1}{n-k}}
\]

\[
= \left(1 - \frac{\varepsilon}{n}\right)^{n-k} |a_k| + \frac{A_k}{|a_k|^{1/(n-k)}} \left(1 - \frac{\varepsilon}{n}\right)^{n-k-1} |a_k|.
\]

It follows from (2) that

\[
\frac{A_k}{|a_k|^{1/(n-k)}} \leq \frac{\varepsilon}{n},
\]

therefore,

\[
R_t^{n-k} + t \sum_{j \neq k, n} |a_j| R_j^{n-k} < \left(1 - \frac{\varepsilon}{n}\right)^{n-k} |a_k| + \frac{\varepsilon}{n} \left(1 - \frac{\varepsilon}{n}\right)^{n-k-1} |a_k|
\]
which contradicts with (5). Thus (4) is proved.

It follows from (3), (4) and the Lemma 1 that \(k \) roots of \(g_t \) lie inside the circle \(\{ z \in \mathbb{C} : |z| = 1 \} \) and the other \(n - k \) – outside the circle \(\{ z \in \mathbb{C} : |z| = (1 - \varepsilon/n)|a_k|^{1/(n-k)} \} \) for all \(t \in [0, 1] \).

Let \(z_0 \) be a root of \(g_t \) from the second group, i.e.,

\[
|z_0| > \left(1 - \frac{\varepsilon}{n} \right)|a_k|^{1/(n-k)}.
\]

We have

\[
|z_0^n + a_k z_0| = t \cdot \sum_{j \neq k, n} a_j z_0^j \leq A_k |z_0|^{n-1},
\]

which leads to

\[
\prod_{j=1}^{n-k} |z_0 - w_j| \leq A_k |z_0|^{n-k-1}.
\]

This implies that there exists an index \(l \) such that

\[
|z_0 - w_l| \leq \left(\frac{A_k}{|z_0|} \right)^{1/(n-k)} |z_0|.
\]

Combining this with (2) and (6) we obtain

\[
|z_0 - w| < \left(\frac{A_k}{(1 - \varepsilon/n)|a_k|^{1/(n-k)}} \right)^{1/(n-k)} |z_0| \leq \frac{\varepsilon}{n + \varepsilon} |z_0| \leq \frac{\varepsilon}{n + \varepsilon} |w| + \frac{\varepsilon}{n + \varepsilon} |z_0 - w_l|,
\]

which produces

\[
|z_0 - w| < \frac{\varepsilon}{n} |w| = \frac{\varepsilon}{n} |a_k|^{1/(n-k)}.
\]

It means that all roots of \(g_t \) from the second group belong to \(\bigcup_{m=1}^{n-k} B_m \), where \(B_m = \{ z \in \mathbb{C} : |z - w_m| < \varepsilon |w_m|/n \} \). Since \(\varepsilon/n < \sin(\pi/(n-k)) \), all \(B_1, \ldots, B_{n-k} \) are disjoint. Therefore \(g_t \) does not vanish on the boundary of \(B_m \) for all \(t \in [0, 1], m = 1, \ldots, n - k \). To conclude the proof, it remains to show that every \(B_m \) contains exactly one root of \(g_t \). Obviously, this is true for \(t = 0 \). Therefore, by Lemma 4 this is also true for all \(t \in [0, 1] \).

Lemma 4. Let \(\{ \eta_j \}_{j=0}^{\infty} \) be non-negative i.i.d. random variables. Put

\[
S_n = \sum_j \eta_j, \quad M_n = \max \{ \eta_j \}_{j=0}^{n}.
\]

(a) The distribution of \(\eta_0 \) has a slowly varying tail if and only if

\[
\frac{M_n}{S_n} \xrightarrow{P} 1, \quad n \to \infty.
\]

(b) The distribution of \(\eta_0 \) has an infinite mean if an only if

\[
\frac{S_n - M_n}{n} \xrightarrow{a.s.} \infty, \quad n \to \infty.
\]

Proof. For (a) see [1], for (b) see [5] Theorem 2.1.

\[\square \]
Lemma 5. Suppose $a_0, a_1, \ldots, a_n \geq 0$ and $\varepsilon > 0$. If for some $k = 1, \ldots, n - 1$
\[\prod_{j \neq k} (1 + a_j)^{2n^2} \leq 1 + a_k \]
and
\[a_k \geq 2(1 - \varepsilon)^{-4n^2/(4n - 1)} \varepsilon^{-4n^2/(4n - 1)} (n + \varepsilon)^{4n^2/(4n - 1)}, \]
then
\[\sum_{j \neq k} a_j + 1 \leq \left(1 - \frac{\varepsilon}{n}\right) \left(\frac{\varepsilon}{n + \varepsilon}\right)^{n-k} a_k^{1/(n-k)}. \]

Proof. Since $1 + \sum_{j \neq k} a_j \leq \prod_{j \neq k} (1 + a_j)$, it suffices to show that
\[(2a_k)^{1/(2n)^2} \leq (1 - \varepsilon) \left(\frac{\varepsilon}{n + \varepsilon}\right)^n a_k^{1/n}, \]
which is equivalent to (7). \(\Box\)

4. PROOF OF THEOREMS

Proof of Theorem 2. By Lemma 2(a), for any $\delta > 0$ we have $P\{A_n\} \rightarrow 1, n \rightarrow \infty$, where
\[A_n = \left\{ |\xi_\tau| > e^\delta \sum_{j \neq \tau} |\xi_j| \right\}. \]

Consider the associated polynomial
\[\tilde{G}(z) = \sum_{j \neq \tau} |\xi_j|z^j - |\xi_\tau|z^\tau. \]

Suppose A_n occurs. If $1 \leq t \leq e^{\delta/n}$, then
\[|\xi_\tau t^\tau| > e^\delta \sum_{j \neq \tau} |\xi_j| \geq t^n \sum_{j \neq \tau} |\xi_j| \geq \sum_{j \neq \tau} t^j |\xi_j|. \]

If $e^{-\delta/n} \leq t \leq 1$, then
\[|\xi_\tau t^\tau| \geq e^{-\delta} |\xi_\tau| + \sum_{j \neq \tau} |\xi_j| \geq \sum_{j \neq \tau} t^j |\xi_j|. \]

Therefore \tilde{G} does not have real roots in the interval $[e^{-\delta/n}, e^{\delta/n}]$. Further, $\tilde{G}(0) > 0, \tilde{G}(\infty) > 0$, and $\tilde{G}(1) < 0$. By Descarte’s rule of signs \tilde{G} has at most 2 positive roots. Thus \tilde{G} has exactly 2 positive roots r and R such that
\[0 < r < e^{-\delta/n} < e^{\delta/n} < R. \]

By Lemma 2 G has exactly τ roots inside the circle $\{z \in \mathbb{C} : |z| = e^{-\delta/n}\}$ and $n - \tau$ roots outside the circle $\{z \in \mathbb{C} : |z| = e^{\delta/n}\}$. Therefore, A_n implies that $R_n(e^{-\delta/n}, e^{\delta/n}) = 0$ which concludes the proof. \(\Box\)

Proof of Theorem 3. Consider the events
\[A_n = \left\{ \prod_{j \neq \tau} \left(1 + \frac{|\xi_j|}{|\xi_n|}\right)^{2n^2} \leq 1 + \frac{|\xi_\tau|}{|\xi_n|} \right\}. \]
and
\[B_n = \left\{ \frac{|\xi_n|}{|\xi|} \geq 2(1 - \varepsilon)^{-4n^2/(4n-1)} - 4n^3/(4n-1)(n + \varepsilon)4n^3/(4n-1) \right\}. \]

Since the distribution of \(\log(1 + \log(1 + |\xi_0|)) \) has a slowly varying tail, by Lemma 4 (a),
\[\Pr \left\{ 4 \cdot \sum_{j \neq \tau} \log(1 + \log(1 + |\xi_j|)) \leq \log(1 + \log(1 + |\xi_\tau|)) \right\} \to 1, \ n \to \infty, \]
which implies
\[(8) \quad \Pr \left\{ \left(\sum_{j \neq \tau} \log(1 + \log(1 + |\xi_j|)) \right)^4 \leq \log(1 + \log(1 + |\xi_\tau|)) \right\} \to 1, \ n \to \infty. \]

Since \(\mathbb{E}\log(1 + |\xi_0|) = \infty \), by Lemma 4 (b) with probability one
\[\frac{1}{n} \sum_{j \neq \tau} \log(1 + |\xi_j|) \to \infty, \ n \to \infty, \]
which together with (8) produces
\[\Pr \left\{ n^3 \cdot \sum_{j \neq \tau} \log(1 + \log(1 + |\xi_j|)) \leq \log(1 + \log(1 + |\xi_\tau|)) \right\} \to 1, \ n \to \infty, \]
and
\[\Pr \{ \log(1 + |\xi_\tau|) \geq n^4 \} \to 1, \ n \to \infty. \]

Since for any \(\delta > 0 \) there exists \(T > 0 \) such that \(\Pr \{ T^{-1} < |\xi_n| < T \} > 1 - \delta \), the last two inequalities imply
\[\Pr \{ A_n \}, \Pr \{ B_n \} \to 1, \ n \to \infty. \]

By Lemma 5 the event \(A_n \cap B_n \) implies that the polynomial \(G_n(z)/|\xi_n| \) satisfies the conditions of Lemma 3. Thus we have proved the theorem for the roots of \(G_n \) lying outside the unit circumference. To treat the rest of the roots consider the associated polynomial
\[G^*_n(z) = z^nG(1/z) = \sum_j \xi_j z^{n-j} \]
and note that \(z_0 \) is a root of \(G_n \) if and only if \(z^{-1} \) is a root of \(G^*_n(z) \).

\[\square \]

References

