FINITE GROUP SCHEMES OF \(p \)-RANK \(\leq 1 \)

HAO CHANG and ROLF FARNSTEINER

Abstract. Let \(\mathcal{G} \) be a finite group scheme over an algebraically closed field \(k \) of characteristic \(\text{char}(k) = p \geq 3 \). In generalization of the familiar notion from the modular representation theory of finite groups, we define the \(p \)-rank \(\text{rk}_p(\mathcal{G}) \) of \(\mathcal{G} \) and determine the structure of those group schemes of \(p \)-rank 1, whose linearly reductive radical is trivial. The most difficult case concerns infinitesimal groups of height 1, which correspond to restricted Lie algebras. Our results show that group schemes of \(p \)-rank \(\leq 1 \) are closely related to those being of finite or domestic representation type.

Introduction

Let \((\mathfrak{g}, [p]) \) be a finite-dimensional restricted Lie algebra over an algebraically closed field \(k \) of characteristic \(\text{char}(k) = p > 0 \). In the representation theory of \((\mathfrak{g}, [p]) \) the closed subsets of the nullcone

\[V(\mathfrak{g}) := \{ x \in \mathfrak{g} : x^{[p]} = 0 \} \]

play an important role. The elements of its projectivization \(\mathbb{P}(V(\mathfrak{g})) \subseteq \mathbb{P}(\mathfrak{g}) \) can be construed as one-dimensional subalgebras of \(\mathfrak{g} \) which are annihilated by the \(p \)-map. More generally, one can consider for each \(r \in \mathbb{N} \) the closed subset

\[E(r, \mathfrak{g}) := \{ e \in \text{Gr}_r(\mathfrak{g}) : [e, e] = (0), e \subseteq V(\mathfrak{g}) \} \]

of the Grassmannian \(\text{Gr}_r(\mathfrak{g}) \) of \(r \)-planes in \(\mathfrak{g} \). These projective varieties were first systematically studied by Carlson-Friedlander-Pevtsova in [6]. The elements of the variety \(E(r, \mathfrak{g}) \) are analogs of \(p \)-elementary abelian subgroups and it is therefore natural to explore their utility for the representation theory of \((\mathfrak{g}, [p]) \).

In analogy with the modular representation theory of finite groups, we define the \(p \)-rank of \(\mathfrak{g} \), via

\[\text{rk}_p(\mathfrak{g}) := \max \{ r \in \mathbb{N}_0 : E(r, \mathfrak{g}) \neq \emptyset \} \]

Restricted Lie algebras of \(p \)-rank \(\text{rk}_p(\mathfrak{g}) = 0 \), which are the analogs of those finite groups, whose group algebras are semi-simple, were determined in early work by Chwe [10], who showed that \(\text{rk}_p(\mathfrak{g}) = 0 \) if and only if \(\mathfrak{g} \) is a torus (i.e., \(\mathfrak{g} \) is abelian with bijective \(p \)-map). In view of [34], this is equivalent to the semi-simplicity of the restricted enveloping algebra \(U_0(\mathfrak{g}) \) of \(\mathfrak{g} \).

In recent work [21], invariants for certain \((\mathfrak{g}, [p]) \)-modules were introduced that turned out to be completely determined on \(E(2, \mathfrak{g}) \). This raised the question concerning properties of this variety, the most basic one pertaining to criteria for \(E(2, \mathfrak{g}) \) being non-empty, that is, \(\text{rk}_p(\mathfrak{g}) \geq 2 \). Contrary to Lie algebras of \(p \)-rank 0, the answer somewhat depends on the characteristic of \(k \).

Theorem A. Suppose that \(p \geq 5 \). If \(\mathfrak{g} \) affords a self-centralizing torus, then \(\text{rk}_p(\mathfrak{g}) = 1 \) if and only if

\[\mathfrak{g}/C(\mathfrak{g}) \cong \mathfrak{sl}(2), \mathfrak{b}_{\mathfrak{sl}(2)}, \mathfrak{b}_{\mathfrak{sl}(2)}^{-1} \]

with the center \(C(\mathfrak{g}) \) of \(\mathfrak{g} \) being non-zero in the latter case.
Here $\mathfrak{b}_{\text{sl}(2)}$ denotes the standard Borel subalgebra of $\mathfrak{sl}(2)$, while $\mathfrak{b}^{-1}_{\text{sl}(2)}$ is a one-dimensional non-split abelian extension of $\mathfrak{b}_{\text{sl}(2)}$. For $p = 3$, or results are not as definitive, as more algebras can occur if $C(g) \neq (0)$. For centerless or perfect Lie algebras, however, we have complete results for $p \geq 3$.

Our main techniques are based on invariants of g that are derived from generic properties of root space decompositions relative to tori of maximal dimension. As usual, these methods are more effective for Lie algebras of algebraic groups, where a complete classification is fairly straightforward, cf. Theorem 4.1.1. In the general case, our technical assumption concerning the existence of a self-centralizing torus mainly rules out solvable Lie algebras affording at most one root. As we show in Section 3, a Lie algebra of p-rank $rk_p(g) \leq 1$ which has at least two roots, always possesses such a torus. This readily implies:

Corollary. Suppose that $p \geq 5$. If g affords a torus of maximal dimension, whose set of roots has at least three elements, then $rk_p(g) \geq 2$.

For $p \geq 3$, the analogous problem of determining those finite groups G, whose p-elementary abelian subgroups all have p-rank ≤ 1 leads to the consideration of groups, whose Sylow-p-subgroups are cyclic: Quillen’s Dimension Theorem readily implies that the complexity $cx_G(k)$ of the trivial G-module is bounded by 1, cf. [1, Theorem]. In view of [7, (XII.11.6)], this is equivalent to the Sylow-p-subgroups being cyclic. The interested reader may consult Brauer’s papers [4, 5] for further information concerning the structure of such finite groups.

In view of Higman’s classical result [30], the determination of finite groups of p-rank ≤ 1 is equivalent to finding those finite groups, whose group algebras have finite representation type. As we show in Section 5, there is a similar connection for finite group schemes, once one also allows group schemes of domestic representation type. This observation rests on the following result, whose proof employs Theorem A in order to give the following characterization of finite group schemes \mathcal{G} of p-rank 1 and with trivial largest linearly reductive normal subgroup \mathcal{G}_{lr}:

Theorem B. Suppose that $p \geq 3$ and let \mathcal{G} be a finite group scheme such that $\mathcal{G}_{\text{lr}} = e_k$. If $rk_p(\mathcal{G}) = 1$, then one of the following alternatives occurs:

(a) $\mathcal{G} = \mathcal{G}_{\text{red}}$, and the finite group $\mathcal{G}(k)$ has p-rank 1 and $O_p'(\mathcal{G}(k)) = \{1\}$.

(b) There is a binary polyhedral group scheme $\tilde{\mathcal{G}} \subseteq \text{SL}(2)$ such that $\mathcal{G} \cong \mathbb{F}(\text{SL}(2), \tilde{\mathcal{G}})$.

(c) $\mathcal{G} = \mathcal{U} \times \mathcal{G}_{\text{red}}$, where \mathcal{U} is V-uniserial of height $\text{ht}(\mathcal{U}) \geq 2$ and $\mathcal{G}(k)$ is cyclic and such that $p | \text{ord}(\mathcal{G}(k))$.

(d) $\mathcal{G} = ((W_n)_{\text{I}} \rtimes G_{m(r)}) \rtimes \mathcal{G}_{\text{red}}$, where $\mathcal{G}(k)$ is abelian and $p | \text{ord}(\mathcal{G}(k))$.

Finite group schemes \mathcal{G} of p-rank 0 were determined by Nagata, who showed that the infinitesimal and reduced constituents of such groups are diagonalizable and of order prime to p, respectively.

Throughout this paper, all vector spaces are assumed to be finite-dimensional over a fixed algebraically closed field k of characteristic $p \geq 3$. The reader is referred to [38] for basic facts concerning restricted Lie algebras and their representations.

Acknowledgments. This paper was mainly written during a two-month visit of the second author to the Collaborative Research Center 701 of the University of Bielefeld. He would like to take this opportunity and thank Henning Krause and his research team for their hospitality. The authors are indebted to Claus Michael Ringel for sharing his manuscript [37] with them.
1. Preliminaries

1.1. Root space decompositions. The proof of the following fundamental result, which is based on the Projective Dimension Theorem [29, (I.7.2)], is analogous to the arguments employed by C.M. Ringel in his description of the elementary modules of the 3-Kronecker quiver, cf. [37, (3.2)].

Lemma 1.1.1. Let \(g \) be a Lie algebra \(U, V \subseteq g \) be subspaces such that

(a) \(\dim_k U = 2 \), and
(b) \(\dim_k [U, V] \leq \dim_k V \).

Then there exist \(u \in U \setminus \{0\} \) and \(v \in V \setminus \{0\} \) such that \([u, v] = 0\).

Let \(g \) be a Lie algebra with root space decomposition

\[g = h \oplus \bigoplus_{\alpha \in R} g_\alpha \]

relative to some Cartan subalgebra \(h \subseteq g \).

Corollary 1.1.2. Let \(g_\alpha \) be a root space of maximal dimension. If \(\beta \in R \setminus \{-\alpha\} \) is such that \(\dim_k g_{\beta} \geq 2 \), then there are \(x \in g_\alpha \setminus \{0\} \) and \(y \in g_\beta \setminus \{0\} \) such that \([x, y] = 0\).

Proof. By assumption, there is a subspace \(U \subseteq g_\beta \) of dimension 2. By choice of \(\alpha \) and \(\beta \), we have

\[\dim_k [U, g_\alpha] \leq \dim_k g_{\alpha+\beta} \leq \dim_k g_\alpha, \]

so that our assertion follows from Lemma 1.1.1.

Let \((g, [p])\) be a restricted Lie algebra. We set

\[\mu(g) := \max \{ \dim_k t : t \subseteq g \text{ torus} \} \]

and consider

\[\text{Tor}(g) := \{ t \subseteq g : t \text{ torus, } \dim_k t = \mu(g) \} \].

Let \(t \in \text{Tor}(g) \) be a torus of dimension \(\mu(g) \). By general theory, the centralizer \(C_g(t) \) of \(t \) in \(g \) is a Cartan subalgebra, and there results the root space decomposition

\[g = C_g(t) \oplus \bigoplus_{\alpha \in R_t} g_\alpha \]

\(g \) relative to \(t \). The set \(R_t \subseteq t^* \setminus \{0\} \) is called the set of roots of \(g \).

We denote by

\[\rho(g, t) := \max_{\alpha \in R_t} \dim_k g_\alpha \]

the maximal dimension of the root spaces and let

\[r(g, t) := |R_t| \]

be the number of roots. It turns out that these data do not depend on the choice of \(t \).

Lemma 1.1.3. Let \((g, [p])\) be a restricted Lie algebra. Then there exist \(\rho(g), r(g) \in \mathbb{N} \) such that

\[\rho(g, t) = \rho(g) \text{ and } r(g, t) = r(g) \]

for all \(t \in \text{Tor}(g) \).
Proof. Let \(t, t' \in \text{Tor}(g) \), then [17, (4.3)] implies that
\[
\rho(g, t) = \rho(g, t') \quad \text{as well as} \quad r(g, t) = r(g, t'),
\]
as desired. \(\square \)

1.2. Generically toral Lie algebras. Let \((g, [p])\) be a restricted Lie algebra. We say that \((g, [p])\) is **generically toral**, provided there is a self-centralizing torus \(t \subseteq g \). In view of [17, (3.8), (7.6)], every torus \(t \in \text{Tor}(g) \) of a generically toral Lie algebra is self-centralizing and the set \(\bigcup_{t \in \text{Tor}(g)} t \) lies dense in \(g \).

If \(g \) is generically toral, then its center \(C(g) \) coincides with \(\bigcap_{t \in \text{Tor}(g)} t \). In particular, \(C(g) \) is a torus.

Lemma 1.2.1. Let \((g, [p])\) be generically toral, \(c \subseteq C(g) \) be a subtorus. Then \(g/c \) is generically toral, and the canonical projection \(\pi: g \rightarrow g/c \) induces an isomorphism \(C(g)/c \xrightarrow{\sim} C(g/c) \).

Proof. Let \(t \subseteq g \) be a torus of dimension \(\mu(g) \). Then \(t':= \pi(t) \) is a torus of \(g':= g/c \).

Let \(\pi(x) \) be an element of the centralizer of \(t' \) in \(g' \). Then we have \([x, t] \in c \subseteq t\) for every \(t \in t \). Since \(t \) is a Cartan subalgebra of \(g \), it follows that \(x \in t \), so that \(\pi(x) \in t' \). As a result, \(t' \) is a self-centralizing torus of \(g' \), so that \(g' \) is generically toral.

Let
\[
g := t + \bigoplus_{\alpha \in R_t} g_{\alpha}
\]
be the root space decomposition of \(g \) relative to \(t \), so that \(C(g) = \bigcap_{\alpha \in R_t} \ker \alpha \).

The surjection \(\pi \) clearly induces an injection \(C(g)/c \hookrightarrow C(g') \). Let \(\pi(z) \in C(g') \) be a central element. Given \(x \in g \), we have \([z, x] \in c \). Let \(t \in t \). As \(t \) is a torus, there is \(s \in t \) such that \(t = s[p] \), whence
\[
[t, z] = [s[p], z] \in \text{ad}(s)p^{-1}(c) = (0).
\]
Hence \(z \in t \) and
\[
\alpha(z)x = [z, x] \in g_{\alpha} \cap c = (0)
\]
for all \(x \in g_{\alpha} \) and \(\alpha \in R_t \). Thus, \(z \in \bigcap_{\alpha \in R_t} \ker \alpha = C(g) \). As a result, the above injection is also surjective. \(\square \)

Lemma 1.2.2. Suppose that \(g \) is generically toral. If \(t \in \text{Tor}(g) \), then
\[
g_p[t] \subseteq \ker \alpha
\]
for every \(\alpha \in R_t \).

Proof. Note that \(C(g) \subseteq C_t(t) = t \). Given \(x \in g_{\alpha} \setminus \{0\} \), we have
\[
(ad x)^{[p]}(t) = (ad x)^{[p]}(t) \subseteq g_{p \alpha} = t,
\]
whence \(x^{[p]} \in \text{Nor}_g(t) \), the normalizer of \(t \) in \(g \). Since the Cartan subalgebra \(t \) is self-normalizing, it follows that \(x^{[p]} \in t \). Moreover,
\[
0 = [x^{[p]}, x] = \alpha(x^{[p]})x,
\]
so that \(x^{[p]} \in \ker \alpha \). \(\square \)
1.3. **Centralizers and 2-saturation.** A restricted Lie algebra \((\mathfrak{e}, [p])\) is called elementary abelian, provided \([\mathfrak{e}, \mathfrak{e}] = \{0\} = V(\mathfrak{e})\). Recall that the subset

\[\mathcal{E}(r, g) := \{ \mathfrak{e} \in \text{Gr}_r(g) : \mathfrak{e} \subseteq g \text{ is elementary abelian} \} \]

of the Grassmannian \(\text{Gr}_r(g)\) is closed and hence a projective variety. This implies that

\[V_{\mathcal{E}(r, g)} := \bigcup_{\mathfrak{e} \in \mathcal{E}(r, g)} \mathfrak{e} \]

is a conical, closed subset of \(V(g)\). We say that \(g\) is \(r\)-saturated, provided \(V(g) = V_{\mathcal{E}(r, g)}\).

Let \(\text{rk}(g)\) be the minimal dimension of all Cartan subalgebras of \(g\), the so-called rank of \(g\). We denote by \(T(g)\) the toral radical of \(g\), that is, the unique maximal toral ideal of \(g\). Note that \(T(g)\) is contained in the center \(C(g)\). For \(x \in g\), \((kx)_p\) denotes the \(p\)-subalgebra of \(g\) that is generated by \(x\). We have \((kx)_p = \sum_{i \geq 0} kx[p]^i\), so that \((kx)_p\) is contained in the centralizer \(C_g(x)\) of \(x\) in \(g\).

Lemma 1.3.1. Let \((g, [p])\) be a restricted Lie algebra. Then the following statements hold:

1. If \(h \subseteq g\) is a \(p\)-subalgebra such that \(\dim V(h) = 1\), then

\[\dim_k h \leq \mu(h) + \text{rk}(g) \]

2. If \(x \in g\) is such that

 a. \(x[p] \in T(g)\), and
 b. \(\dim V(C_g(x)) \leq 1\),

then \(\dim_k g \leq p(\mu(C_g(x)) + \text{rk}(g))\).

Proof. (1) Since \(\dim V(h) = 1\), there exists a torus \(t \subseteq h\) and a \(p\)-nilpotent element \(y \in h\) such that

\[h = t \oplus (ky)_p, \]

cf. for instance [16, (4.3)]. The dimension of the first summand is bounded by \(\mu(h)\), while [17, (8.6(3))] implies \(\dim_k (ky)_p \leq \text{rk}(g)\).

(2) Since \(x[p] \in T(g) \subseteq C(g)\), we have \((\text{ad } x)^p = 0\), so that \(g\) affords a decomposition

\[g = \bigoplus_{i=1}^{p} a_i[i] \]

into \((\text{ad } x)\)-cyclic subspaces, where \(\dim_k a_i = i\). It follows that \(\dim_k C_g(x) = \sum_{i=1}^{p} a_i\), while

\[\dim_k g = \sum_{i=1}^{p} ia_i \leq p(\sum_{i=1}^{p} a_i) = p \dim_k C_g(x). \]

Using (1) we arrive at

\[\dim_k g \leq p(\mu(C_g(x)) + \text{rk}(g)), \]

as desired. \(\square\)

Remark. Lemma 1.3.1 provides no information for nilpotent Lie algebra, as we have \(\dim_k g = \text{rk}(g)\) in that case. This is one reason for confining our attention to generically toral Lie algebras.

Lemma 1.3.2. Let \((g, [p])\) be generically toral. Suppose there is \(x \in V(g) \setminus \{0\}\) such that \(\dim V(C_g(x)) = 1\). Then we have

\[\dim_k g \leq p(2\mu(g) - 1 - \dim_k C(g)). \]
Proof. In view of Lemma 1.2.1, the algebra $g' := g/C(g)$ is generically toral and [17, (3.5),(3.6)] implies $\text{rk}(g') = \mu(g')$. As before, we write

$$C_g(x) = t \oplus (ky)_p,$$

for some torus $t \subseteq g$ and some p-nilpotent element $y \in g$. Since $C(g)$ is a torus, the canonical projection $\pi : g \to g'$ provides an isomorphism $\pi : (ky)_p \to (k\pi(y))_p$, so that [17, (8.3)] in conjunction with [25, (3.3)] yields $\dim_k(ky)_p \leq \text{rk}(g') = \mu(g') = \mu(g) - \dim_k C(g)$. The assumption $\mu(C_g(x)) = \mu(g)$ implies that there is $t \in \text{Tor}(g)$ with $x \in C_g(t)$. As t is self-centralizing, we have reached a contradiction. Consequently, $\mu(C_g(x)) \leq \mu(g) - 1$. The assertion now follows from Lemma 1.3.1. \hfill \Box

Corollary 1.3.3. Let $(g, [p])$ be a restricted Lie algebra.

(1) If

$$\dim_k g > p(\mu(g) + \text{rk}(g)),$$

then g is 2-saturated.

(2) If g is generically toral and

$$\dim_k g > p(2\mu(g) - 1 - \dim_k C(g)),$$

then g is 2-saturated.

Proof. Let $x \in V(g) \setminus \{0\}$. In view of Lemma 1.3.1 and Lemma 1.3.2, we have $\dim V(C_g(x)) \geq 2$. Hence there is $y \in V(C_g(x)) \setminus \{0\}$ such that $kx \neq ky$. Consequently, $kx \oplus ky \in E(2, g)$ and $x \in V_{E(2, g)}$. \hfill \Box

Examples. We shall show that the restricted Lie algebras of Cartan type are 2-saturated.

(1) Let $W(n)$ be the Jacobson-Witt algebra. Then $W(n)$ is generically toral and $n = \mu(g) = \text{rk}(g)$, while

$$\dim_k W(n) = np^n > p(2n - 1)$$

unless $n = 1$. It follows that $V(W(n)) = V_{E(2, W(n))}$ for $n \geq 2$. For $n = 1$, the result follows from the fact that $\dim_k C_g(x) < p$ and $\mu(C_g(x)) = 0$ for every $x \in V(W(1))$.

(2) Let $S(n)$ be the special Lie algebra, where $n \geq 3$. Then we have $\dim_k S(n) = (n - 1)(p^n - 1)$ and Demushkin’s work [12, Thm.2, Cor.2] yields $\text{rk}(S(n)) = (n - 1)(p - 1)$. Thus,

$$\dim_k S(n) = \left(\sum_{i=0}^{n-1} p^i \right) \text{rk}(S(n)) > 2p \text{rk}(S(n)),$$

and Corollary 1.3.3 implies $V(S(n)) = V_{E(2, S(n))}$.

(3) Consider the Hamiltonian algebra $H(2r)$. Then we have $\dim_k H(2r) = p^{2r} - 2$, while $\text{rk}(H(2r)) = p^r - 2$, cf. [13, Cor.]. Consequently,

$$2p \text{rk}(H(2r)) = 2p^{r+1} - 4p < p^{2r} - 2,$$

unless $r = 1$. In that case, we have $\mu(H(2)) = 1$, and

$$p(\text{rk}(H(2)) + \mu(H(2))) = p(p - 1) = p^2 - p < p^2 - 2 = \dim_k H(2).$$

Thus, Corollary 1.3.3 shows that $H(2r)$ is 2-saturated.
(4) Consider the contact algebra $K(2r+1)$. Demushkin’s work yields $\mu(K(2r+1)) = r+1$. Thanks to [9, (3.3)], we have \(\text{rk}(K(2r+1)) \in \{p^r, p^r - 1\} \). Consequently,
\[
\dim_\mathbb{K} K(2r+1) \geq p^{2r+1} - 1 - (p-1)(\sum_{i=0}^{2r} p^i) > p^{2r-1} - 1
\geq p(1 + p(2r-2) + p^r) \geq p(r+1+p^r)
\geq p(\mu(K(2r+1)) + \text{rk}(K(2r+1)))
\]
for $r \geq 2$. For $r = 1$, we have
\[
\dim_\mathbb{K} K(3) \geq p^3 - 1 > p(2+p) \geq p(\mu(K(3)) + \text{rk}(K(3))).
\]
The desired result now follows from Corollary 1.3.3.

2. Central Extensions

Let $(g, [p])$ be a restricted Lie algebra. Given a g-module M, we denote by $\mathcal{H}^n(g, M)$ the n-th Chevalley-Eilenberg cohomology group of g with coefficients in M. Recall that $\mathcal{H}^1(g, M)$ is isomorphic to the quotient $\text{Der}_K(g, M)/\text{Inn}(g, M)$ of derivations by inner derivations, while $\mathcal{H}^2(g, M)$ describes the equivalence classes of abelian extensions of g by M, cf. [31, VII] for more details. A special case is given by a central extension
\[
(0) \longrightarrow c \longrightarrow g \longrightarrow g/c \longrightarrow 0,
\]
where $c \subseteq C(g)$ is a torus. If $\mathcal{H}^2(g/c, k) = (0)$, then such an extension splits in the category of ordinary Lie algebras, but not necessarily in the category of restricted Lie algebras. However, one does have good control of the p-map in this situation.

Lemma 2.1. Let $(g, [p])$ be a restricted Lie algebra with toral center.

1. The canonical projection $\pi : g \longrightarrow g/C(g)$ induces an injective, closed morphism $\pi_* : \mathcal{E}(2, g) \longrightarrow \mathcal{E}(2, g/C(g))$; $e \mapsto \pi(e)$.

2. If $\mathcal{H}^2(g/C(g), k) = (0)$, then π_* is bijective.

Proof. (1) By assumption, the center $C(g)$ is a torus. This readily implies that
\[
\pi_* : \mathcal{E}(2, g) \longrightarrow \mathcal{E}(2, g/C(g))
\]
is a morphism of projective varieties. In particular, the map π_* is closed.

Let $e, f \in \mathcal{E}(2, g)$ be such that $\pi(e) = \pi(f)$. Then $e \oplus C(g) = f \oplus C(g)$, so that $e = V(e \oplus C(g)) = V(f \oplus C(g)) = f$. Hence π_* is injective.

(2) Since $\mathcal{H}^2(g/C(g), k) = (0)$, the exact sequence
\[
(0) \longrightarrow C(g) \longrightarrow g \longrightarrow g/C(g) \longrightarrow 0
\]
splits as a sequence of ordinary Lie algebras. Hence there is a subalgebra $h \subseteq g$ such that
\[
g = h \oplus C(g).
\]
As $h \cong g/C(g)$, there is a p-map on h such that $\pi|_h$ is an isomorphism of restricted Lie algebras. General theory (cf. [38, (1.2.1)]) provides a p-semilinear map $\lambda : h \longrightarrow C(g)$ such that
\[
(h, c)^{[p]} = (h^{[p]}, \lambda(h)+c^{[p]})
\]
for all $(h, c) \in g$. Let $e \in \mathcal{E}(2, g/C(g))$. Then there exist $x, y \in V(h)$ such that $e = k \pi(x, 0) \oplus k \pi(y, 0)$. Since $C(g)$ is a torus, we can find $v, w \in C(g)$ such that $v^{[p]} = -\lambda(x)$ and $w^{[p]} = -\lambda(y)$. It follows that
respectively. Then we have E.

We let g be a maximal torus (h). There is a linear form (b), there is a linear form (b), there is a linear form (b).

In this case, we call (b) be distinguished with root space decomposition (c) the Lie algebra g is generated by $\bigcup_{\alpha \in S_1} g_\alpha$.

In this case, we call t a distinguished torus.

Lemma 2.2. Suppose that g is freely generated. If $\rho(g) = 1$, then $H^2(g, k) = (0)$.

Proof. Let $t \in \text{Tor}(g)$ be distinguished with root space decomposition $g = t \oplus \bigoplus_{\alpha \in R_t} g_\alpha$.

We let $S_t \subseteq R_t$ be a subset such that the defining conditions (a), (b) and (c) hold. Since $\rho(g) = 1$, we write $g_\alpha = kx_\alpha$ for every $\alpha \in R_t$.

Let $\varphi : g \rightarrow g^*$ be a derivation of degree 0, that is, $\varphi(g_\alpha) \subseteq (g^*)_\alpha$ for all $\alpha \in R_t$. Owing to (a) and (b), there is a linear form $f \in (g^*)_0$ such that $f([x_\alpha, x_{-\alpha}]) = -\varphi(x_\alpha)(x_{-\alpha})$ $\forall \alpha \in S_t$.

We let

$$\text{ad} f : g \rightarrow g^* ; \ x \mapsto x.f$$

be the inner derivation effected by f and consider the derivation $\psi := \varphi - \text{ad} f$. Given $\alpha \in S_t$, we have $\psi(x_\alpha) \in (g^*)_\alpha$ and

$$\psi(x_\alpha)(x_{-\alpha}) = \varphi(x_\alpha)(x_{-\alpha}) - (x_\alpha.f)(x_{-\alpha}) = \varphi(x_\alpha)(x_{-\alpha}) + f([x_\alpha, x_{-\alpha}]) = 0.$$

Since ψ has degree 0, this implies that $\psi(\sum_{\alpha \in S_t} g_\alpha) = (0)$. As g is generated by $\sum_{\alpha \in S_t} g_\alpha$, it follows that $\psi = 0$, so that $\varphi = \text{ad} f$ is an inner derivation. Thanks to [15, (1.2)], this forces all derivations to be inner, whence $H^1(g, g^*) = (0)$. The assertion now follows from the canonical inclusion $H^2(g, k) \hookrightarrow H^2(g, g^*)$, cf. [14, (1.3)].

Remark. Condition (a) is essential for the validity of Lemma 2.2. The Witt algebra $W(1) := \bigoplus_{i=1}^{p-2} k e_i$ is generically toral with maximal torus $k e_0$ and root spaces $W(1)_1 := k e_i$. It is generated by $W(1)_1 \oplus W(1)_2$, and we have $k e_0 = [W(1)_1, W(1)_1]$, while $[W(1)_2, W(1)_2] = (0)$. For $p \geq 5$, the space $H^2(W(1), k)$ is known to be one-dimensional (cf. [3, (5.1)]).
3. Lie algebras with enough roots

Let \((g, [p])\) be a restricted Lie algebra. Recall that

\[\text{rk}_p(g) = \max \{ r \in \mathbb{N}_0 : E(r, g) \neq \emptyset \} \]

is the \(p\)-rank of \(g\). As noted before, a result by Chwe [10] asserts that \(g\) is a torus if and only if \(\text{rk}_p(g) = 0\).

In this section we show that, in the context of Lie algebras with \(\text{rk}_p(g) = 1\), our assumption concerning the existence of self-centralizing maximal tori is fulfilled in most cases of interest.

Proposition 3.1. Let \((g, [p])\) be a restricted Lie algebra such that \(\text{rk}_p(g) = 1\). If \(r(g) \geq 2\), then \(g\) is generically toral.

Proof. Let \(t \in \text{Tor}(g)\) be a torus of dimension \(\mu(g)\), \(h := C_g(t)\) be the corresponding Cartan subalgebra of dimension \(\text{rk}(g)\) with root space decomposition

\[g = h \oplus \bigoplus_{\alpha \in R_t} g_\alpha. \]

Suppose there is \(x \in V(h) \setminus \{0\}\). Since \([t, h] = 0\), we have \(t \subseteq C_g(x)\), and there results a weight space decomposition

\[C_g(x) = C_g(x)_0 \oplus \bigoplus_{\alpha \in R_t} C_g(x)_\alpha \]

of \(C_g(x)\) relative to \(t\). As \(x\) acts nilpotently on each root space \(g_\alpha\), we have \(C_g(x)_\alpha = 0\) for all \(\alpha \in R_t\). Moreover, \(t\) is a maximal torus of \(C_g(x)\), so that \(C_g(x)_0 = h \cap C_g(x)\) is a Cartan subalgebra of \(C_g(x)\).

In view of \(\text{rk}_p(g) = 1\), we have \(V(C_g(x)) = kx\), and [16, (3.2),(4.3)] provides a toral element \(t \in C_g(x)\) and a \(p\)-nilpotent element \(y \in C_g(x)\) such that

\[C_g(x) = kt \rtimes I, \]

where \(I := T(C_g(x)) \oplus (ky)_p\) is an abelian \(p\)-ideal of \(C_g(x)\). Consequently, \(I^{[p]} = T(C(g)) \oplus (ky^{[p]})_p\) lies in the center \(Z(x)\) of \(C_g(x)\). Since \(h \cap C_g(x)\) is a Cartan subalgebra of \(C_g(x)\), it follows that

\[T(C_g(x)) \oplus (ky^{[p]})_p \subseteq Z(x) \subseteq C_g(x) \cap h. \]

As \(t\) is the set of semisimple elements of \(h\), it follows that \(T(C_g(x)) \subseteq t\). Observing that \((t + I)/I\) is a maximal torus of \(C_g(x)/I\), while \(t \cap (ky)_p = 0\), we conclude that \(C_g(x) = t \rtimes (ky)_p\). Moreover, \(t \rtimes (ky^{[p]})_p \subseteq C_g(x)_0\), so that \(\dim_k C_g(x)/C_g(x)_0 \leq 1\). If \(C_g(x) = C_g(x)_0\), then \(R_t = \emptyset\) and \(r(g) = 0\), a contradiction. Alternatively, \(t\) acts on the one-dimensional space \(C_g(x)/C_g(x)_0\), so that we find \(\alpha \in R_t\) and \(x_\alpha \in C_g(x)_\alpha \setminus \{0\}\) such that

\[C_g(x) = C_g(x)_0 \oplus kx_\alpha. \]

In view of the above, we thus have \(g = h \oplus g_\alpha\), so that \(r(g) = 1\), a contradiction.

Hence \(V(h) = \{0\}\), implying that \(h\) is a torus. As a result, the restricted Lie algebra \(g\) is generically toral. \(\square\)

Remark. The foregoing result fails for Lie algebras with \(r(g) = 1\): Let \(g := kt \oplus kx \oplus ky\), where

\[[y, g] = (0), \quad [t, x] = x; \quad t^{[p]} = t, \quad x^{[p]} = y, \quad y^{[p]} = 0. \]

Then \(h := kt \oplus ky\) is a Cartan subalgebra of \(g\), and \(V(g) = V(h) = ky\). Hence \(\mu(g) = 1\), \(g\) is not generically toral, and \(\text{rk}_p(g) = 1\).

Corollary 3.2. Let \((g, [p])\) be a restricted Lie algebra such that \(\text{rk}_p(g) = 1\). If \(g\) is centerless or not solvable, then \(g\) is generically toral.
Proof. Let \(t \in \text{Tor}(g) \),
\[
g = C_g(t) \oplus \bigoplus_{\alpha \in R_t} g_{\alpha}
\]
be the corresponding root space decomposition.

If \(r(g) = 0 \), then \(g \) is nilpotent, hence not centerless and solvable, a contradiction.

If \(r(g) = 1 \), then \(R_t = \{ \alpha \} \), and \(g_{\alpha} \) is an abelian ideal. This implies that \(g \) is solvable. By assumption, \(g \) is centerless, so that \(g_{[\alpha]} = \{ 0 \} \). Let \(x \in V(C_g(t)) \). Since \(x \) acts nilpotently on \(g_{\alpha} \), there is \(x_{\alpha} \in g_{\alpha} - \{ 0 \} \) such that \([x, x_{\alpha}] = 0 \). As \(rk_p(g) = 1 \), we have \(x = 0 \), so that \(C_g(t) \) is a torus. The assertion now follows from Proposition 3.1.

4. Lie algebras with \(rk_p(g) = 1 \)

Our goal is to classify those generically toral algebras that do not possess a two-dimensional elementary abelian Lie algebra. These are the Lie algebras with \(rk_p(g) \leq 1 \). By way of illustration, we first consider algebraic Lie algebras.

4.1. Algebraic Lie algebras. Throughout this subsection, we let \(G \) be an algebraic group with Lie algebra \(g = \text{Lie}(G) \).

Theorem 4.1.1. The Lie algebra \(g = \text{Lie}(G) \) has rank \(rk_p(g) \leq 1 \) if and only if there exists a torus \(t \subseteq g \) such that

(a) \(g \cong t \oplus \mathfrak{sl}(2) \), or
(b) \(g \cong t \times (kx)_p \), for some \(p \)-nilpotent element \(x \in g \).

Proof. Let \(U \subseteq G \) be the unipotent radical of \(G \) and put \(u := \text{Lie}(U) \). Then \(G \) acts on \(u \) via the adjoint representation, so that \(C(u) \) and \(V(C(u)) \) are \(G \)-stable subsets of \(g \).

Suppose that \(U \neq e_k \), so that \(u \neq (0) \). Then \(C(u) \neq (0) \) is \(p \)-unipotent, and [10] yields \(V(C(u)) \neq \{ 0 \} \). Since \(rk_p(C(u)) \leq rk_p(g) \leq 1 \), it follows that \(V(C(u)) = kx \) is one-dimensional. As a result, \(kx \) is an ideal of \(g \).

Let \(y \in V(g) \). Since \(y \) acts nilpotently on \(kx \), we obtain \([x, y] = 0 \). Hence \(kx + kyy \) is elementary abelian, so that \(y \in kx \). Consequently, \(V(g) = kx \), and \(g \) is of type (b).

Alternatively, the group \(G \) is reductive. Let \(T \subseteq G \) be a maximal torus with Lie algebra \(t \),
\[
g = t \oplus \bigoplus_{\alpha \in \Phi} g_{\alpha}
\]
be the root space decomposition of \(g \) relative to \(T \). If \(\Phi = \emptyset \), then \(g = t \) is of type (b). Alternatively, let \(\Delta \subseteq \Phi^+ \subseteq \Phi \) be subsystems of simple and positive roots, respectively. General theory tells us that \(\bigcup_{\alpha \in \Phi} g_{\alpha} \subseteq V(g) \). Let \(\alpha_0 \in \Phi \) be a root of maximal height. If there is a positive root \(\alpha_1 \in \Phi^+ - \{ \alpha_0 \} \), then \([g_{\alpha_1}, g_{\alpha_0}] = (0) \). As this contradicts \(rk_p(g) \leq 1 \), we conclude that \(|\Phi^+| = 1 \). Consequently, \(\Phi = \{ \alpha_0, -\alpha_0 \} \), and \(G \) is of type \(A_1 \). This implies that \(g \) is of type (a).

Finally, Lie algebras of type (a) or (b) are easily seen to have \(p \)-rank \(rk_p(g) \leq 1 \). \(\square \)
4.2. Centralizers and roots.

Proposition 4.2.1. Let g be generically toral and such that $\operatorname{rk}_p(g) = 1$. Given $t \in \operatorname{Tor}(g)$, the following statements hold:

1. There is a root space decomposition $g = t \oplus \bigoplus_{\alpha \in R_t} g_{\alpha}$.
2. We have $C_g(x_\alpha) = (\ker \alpha) \oplus k x_\alpha$ for every $\alpha \in R_t$ and $x_\alpha \in g_\alpha \setminus \{0\}$.
3. If $\dim_k g_\alpha = \rho(g)$, then $\dim_k g_\beta = 1$ for all $\beta \in R_t \setminus \{\alpha, -\alpha\}$.
4. If $\dim_k g_\alpha = \rho(g)$ and $R_t \setminus \{\alpha, -\alpha, -2\alpha\} \neq \emptyset$, then $\rho(g) = 1$.

Proof. 1. Owing to [17, (3.8)], we have $C_g(t) = t$.

2. Let $\alpha \in R_t$, $x_\alpha \in g_\alpha \setminus \{0\}$. Then the centralizer $C_g(x_\alpha)$ is a t-stable p-subalgebra. Observing $x_\alpha \neq 0$, we obtain a weight space decomposition

$$C_g(x_\alpha) = (\ker \alpha) \oplus \bigoplus_{\beta \in R_t} C_g(x_\alpha) \cap g_\beta$$

relative to t. Since $\ker \alpha \subseteq t$ is a subtorus, Lemma 1.2.2 ensures the existence of $t_\alpha \in \ker \alpha$ such that $x_\alpha^{[p]} = t_\alpha^{[p]}$. This implies that $x_\alpha - t_\alpha \in V(g) \cap C_g(x_\alpha)$. Note that

$$f_\alpha : C_g(x_\alpha) \longrightarrow C_g(x_\alpha) ; \ y \mapsto [t_\alpha, y]$$

is a semisimple linear transformation such that $t_\alpha^{[p]} = 0$. Consequently, $f_\alpha = 0$, so that $x_\alpha - t_\alpha$ belongs to the center $Z(x_\alpha)$ of $C_g(x_\alpha)$. Since $\operatorname{rk}_p(g) = 1$, it follows that $V(g) \cap C_g(x_\alpha) = k(x_\alpha - t_\alpha)$.

Let t_α be the unique maximal toral ideal of $C_g(x_\alpha)$. Owing to [16, (4.3)], there exist a p-nilpotent element $y \in C_g(x_\alpha)$, and a toral element $t \in C_g(x_\alpha)$ such that

$$C_g(x_\alpha) = kt \ltimes (t_\alpha \oplus (k y)_p),$$

where $n_\alpha := t_\alpha \oplus (k y)_p$ is an abelian p-ideal of $C_g(x_\alpha)$.

Since $V(C_g(x_\alpha)) = k(x_\alpha - t_\alpha)$ there are $\lambda \in k^\times$ and $n \geq 0$ such that $y^{[p]} = \lambda(x_\alpha - t_\alpha)$. In view of $[t, y^{[p]}] \subseteq (ad y)^{p-1}(C_g(x_\alpha)) \subseteq (ad y)^2(C_g(x_\alpha)) = (0)$, while $[t, x_\alpha - t_\alpha] = k x_\alpha$, it follows that $n = 0$. We therefore have $C_g(x_\alpha) = kt \oplus t_\alpha \oplus k(x_\alpha - t_\alpha)$.

Since t acts on $C_g(x_\alpha)$ by derivations, the center $Z(x_\alpha)$ is t-stable. As t_α is a toral ideal in $Z(x_\alpha)$, it follows that $(ad s)(t_\alpha) = (0)$ for every $s \in t$. Consequently, $t_\alpha \subseteq C_g(x_\alpha)$, and we have $C_g(x_\alpha) = (\ker \alpha) \oplus k(x_\alpha - t_\alpha)$ for dimension reasons. Thus, $C_g(x_\alpha) = (\ker \alpha) \oplus k x_\alpha$.

Alternatively, we have $t_\alpha = \ker \alpha$. But then $[t, \ker \alpha] = (0)$, whence $[t, x_\alpha - t_\alpha] = 0$ as $t \in C_g(x_\alpha)$.

Hence $[t, C_g(x_\alpha)] = (0)$, so that $t = 0$ and $C_g(x_\alpha) = (\ker \alpha) \oplus k x_\alpha$.

3. Suppose there is $\beta \in R_t \setminus \{\alpha, -\alpha\}$ such that $\dim_k g_\beta \geq 2$. Then Corollary 1.1.2 provides $x \in g_\alpha \setminus \{0\}$ and $y \in g_\beta \setminus \{0\}$ such that $[x, y] = 0$. Thus, $y \in C_g(x)$, which contradicts (2).

4. Let $\beta \neq \alpha, -\alpha, -2\alpha$ be a root, $x_\beta \in g_\beta \setminus \{0\}$. In view of (2), the map

$$f_\beta : g_\alpha \longrightarrow g_{\alpha + \beta} ; \ v \mapsto [x_\beta, v]$$

is injective. Since $\alpha + \beta \in R_t \setminus \{\alpha, -\alpha\}$, part (3) implies $\dim_k g_\alpha \leq \dim_k g_{\alpha + \beta} \leq 1$. \qed

Let $t \in \operatorname{Tor}(g)$ be maximal torus. Then $R_t \subseteq t^*$, and we put $r_t := \dim_k(R_t)$. If t is self-centralizing, then $(R_t)^\perp = C(g)$. If t is self-centralizing, then $(R_t)^\perp = C(g)$. If t is self-centralizing, then $(R_t)^\perp = C(g)$.

Given $t \in \operatorname{Tor}(g)$, we denote by $t_p := \{t \in t : t^{[p]} = t\}$ the \mathbb{F}_p-subspace of its toral elements. General theory implies that $\dim_{\mathbb{F}_p} t_p = \mu(g)$. Since $\alpha(t^{[p]}) = \alpha(t)^p$ for all $\alpha \in R_t$ and $t \in t$, it follows that every $\alpha \in R_t$ is uniquely determined by its restriction $\alpha|_{t_p} \in \operatorname{Hom}_{\mathbb{F}_p}(t_p, \mathbb{F}_p)$. Moreover,

$$r_t = \dim_{\mathbb{F}_p} \mathbb{F}_p \{\alpha|_{t_p} : \alpha \in R_t\}$$
is the dimension of the \mathbb{F}_p-span of R_t. By abuse of notation, we will henceforth consider R_t a subset of $\text{Hom}_p(t_p, \mathbb{F}_p)$ whenever this is convenient.

Let k_{-1} be the one-dimensional restricted $\mathfrak{b}_{\mathfrak{sl}(2)}$-module, on which the given toral element $t \in \mathfrak{b}_{\mathfrak{sl}(2)}$ acts via -1. Thus, the semidirect product

$$\mathfrak{b}_{\mathfrak{sl}(2)}^{-1} := \mathfrak{b}_{\mathfrak{sl}(2)} \ltimes k_{-1} = kt \oplus kx \oplus ky$$

has the following structure of a restricted Lie algebra:

$$[t, x] = x, \quad [t, y] = -y, \quad [x, y] = 0; \quad t[y] = t, \quad x[b] = 0 = y[b].$$

Note that $\mathfrak{b}_{\mathfrak{sl}(2)}^{-1}$ is centerless and generically toral such that $\mu(\mathfrak{b}_{\mathfrak{sl}(2)}^{-1}) = 1 = \rho(\mathfrak{b}_{\mathfrak{sl}(2)}^{-1})$. Moreover, $\mathbb{E}(2, \mathfrak{b}_{\mathfrak{sl}(2)}^{-1}) = \{kx \oplus ky\}$.

Lemma 4.2.2. Let \mathfrak{g} be a generically toral restricted Lie algebra such that $\text{rk}_p(\mathfrak{g}) = 1 = \rho(\mathfrak{g})$. If $\mu(\mathfrak{g}) = 1 + \dim_k C(\mathfrak{g})$, then

$$\mathfrak{g}/C(\mathfrak{g}) \cong \mathfrak{b}_{\mathfrak{sl}(2)}, \mathfrak{b}_{\mathfrak{sl}(2)}^{-1}, \mathfrak{sl}(2).$$

Moreover, if $\mathfrak{g}/C(\mathfrak{g}) \cong \mathfrak{b}_{\mathfrak{sl}(2)}^{-1}$, then $C(\mathfrak{g}) \neq (0)$.

Proof. Let $t \in \text{Tor}(\mathfrak{g})$. By assumption, we have $r_t = 1$, so that there is $\alpha \in R_t$ with $R_t \subseteq \mathbb{F}_p \alpha$. In view of Lemma 1.2.2, we have $\mathfrak{g}_{\alpha}^{(p)} \subseteq \ker \alpha = C(\mathfrak{g})$ for all $i \in \mathbb{F}_p^\times$.

Observing $\rho(\mathfrak{g}) = 1$, we consider the p-subalgebra

$$\mathfrak{h} := \mathfrak{g}_\alpha \oplus \mathfrak{g}_{-\alpha}$$

along with the \mathfrak{h}-module $V := \mathfrak{g}/\mathfrak{h}$.

If $V = (0)$, then two cases arise. If $[\mathfrak{g}_\alpha, \mathfrak{g}_{-\alpha}] \subseteq \ker \alpha$, then $\mathfrak{g}/C(\mathfrak{g}) \cong \mathfrak{b}_{\mathfrak{sl}(2)}, \mathfrak{b}_{\mathfrak{sl}(2)}^{-1}$. Since $\mathbb{E}(2, \mathfrak{b}_{\mathfrak{sl}(2)}^{-1}) \neq \emptyset$, we must have $C(\mathfrak{g}) \neq (0)$ in the latter case. Alternatively, the restricted Lie algebra $\mathfrak{g}/C(\mathfrak{g})$ is three-dimensional and not solvable, so that $\mathfrak{g}/C(\mathfrak{g}) \cong \mathfrak{sl}(2)$.

Hence we assume that $V \neq (0)$. This implies in particular that $p \geq 5$.

Suppose that $[\mathfrak{g}_\alpha, \mathfrak{g}_{-\alpha}] \subseteq \ker \alpha$. Then \mathfrak{h} is solvable and such that

$$\mathfrak{g}_\alpha \oplus \mathfrak{g}_{-\alpha} \subseteq [\mathfrak{h}, \mathfrak{h}].$$

By Strade’s Theorem (cf. [38, (V.8.4)]), every simple $U_0(\mathfrak{h})$-module has dimension a p-power. Since $\dim_k V \leq p - 3$, we conclude that every composition factor of V is one-dimensional. Hence there is $i \in \{2, \ldots, p - 2\}$ and a root vector $v \in \mathfrak{g}_{\alpha \alpha} \setminus \{0\}$ such that $(\mathfrak{g}_{\alpha} + \mathfrak{g}_{-\alpha})v \subseteq \mathfrak{h}$. Thus, if $\mathfrak{g}_\alpha \cdot v \neq (0) \neq \mathfrak{g}_{-\alpha} \cdot v$, then $i + 1, i - 1 \in \{-1, 0, 1\}$, so that $i = 0$, a contradiction. It follows that $v \in C_{\mathfrak{g}}(\mathfrak{g}_\alpha)$ or $v \in C_{\mathfrak{g}}(\mathfrak{g}_{-\alpha})$, which contradicts Proposition 4.2.1(2).

We consider the factor algebra $\mathfrak{g}' := \mathfrak{g}/C(\mathfrak{g})$ along with the canonical projection $\pi : \mathfrak{g} \to \mathfrak{g}'$ and recall that $C(\mathfrak{g}) = \ker \alpha$. Then there is a toral element $t \in \mathfrak{t}$ such that

$$\mathfrak{g}' = \kappa \pi(t) \bigoplus \bigoplus_{i \in \mathbb{F}_p^\times} \mathfrak{g}'_{i\alpha},$$

where $\pi : \mathfrak{g}_\alpha \to \mathfrak{g}'_{i\alpha}$ is an isomorphism and α is identified with the induced map $t/\ker \alpha \to k$. Then we have

$$C_{\mathfrak{g}'}(\mathfrak{g}'_{i\alpha}) = \bigoplus_{i \in \mathbb{F}_p} C_{\mathfrak{g}'}(\mathfrak{g}'_{i\alpha}).$$

Since $[\mathfrak{g}'_{i\alpha}, \mathfrak{g}'_{-i\alpha}] \neq (0)$, it follows from Proposition 4.2.1 that

$$C_{\mathfrak{g}'}(\mathfrak{g}'_{i\alpha}) = \mathfrak{g}'_{i\alpha}.$$
Let $h' := \pi(h)$. Note that $h' = h/C(g)$ is isomorphic to $\sl(2)$, where we pick $\pi(t)$ such that $\alpha(\pi(t)) = 2$. Given $x \in V(h') \setminus \{0\}$, there is $g \in \Aut_p(h')$ such that $x = g(x_\alpha)$. Setting $t' := g(\pi(t))$, the inverse image $t = \pi^{-1}(kt')$ is a torus of dimension $\mu(g)$. The arguments above then show that $C_{g'}(x) = kx$.

Recall that g' is an h'-module of dimension $\leq p$ such that $h' \subseteq g'$. In view of [35], every indecomposable $U_0(h')$-module of dimension $< p$ is simple. Thus, the $U_0(h')$-module g' is either indecomposable or semisimple. In the latter case, there exists an h'-submodule $W' \subseteq g'$ such that $g' = h' \oplus W'$. Since $V \neq (0)$, we have $W' \neq (0)$ and there is a weight vector $w' \in W'$ such that $[g'_a, w'] = 0$, which contradicts $C_{g'}(g'_a) = g'_a$. Hence g' is indecomposable and not simple, whence $\dim_k g' = p$.

Let $x \in V(h') \setminus \{0\}$. Since $C_{g'}(x) = kx$, it follows that g' is a cyclic, projective $U_0(\sl(2))$-module. A consecutive application of [27, (3.2)] and [26, (1.4)] then shows that g' is a projective $U_0(h')$-module. Since $\dim_k g' = p$, we conclude that g' is the Steinberg module for $U_0(h')$ and hence simple, a contradiction.

As a result, we have $V = (0)$ and $g/C(g)$ has the asserted structure. \[\square \]

Example. Given $g := b^{-1}_{\sl(2)}$ as above, we consider the alternating form $\lambda : g \times g \to k$ such that

$\lambda(x, y) = 1$, \ $\lambda(t, g) = 0$.

By definition, its Koszul differential $\partial(\lambda) \in \Lambda^3(g)^*$ is an alternating 3-form, which is uniquely determined by $\partial(\lambda)(t, x, y) \in k$. Direct computation shows that $\partial(\lambda)(t, x, y) = 0$. Hence there is a one-dimensional non-split central extension $g^\lambda := g \oplus kz$ of g such that

$$[(u, \alpha z), (v, \beta z)] := ([u, v], \lambda(u, v)z)$$

for all $(u, \alpha z), (v, \beta z) \in g^\lambda$. The algebra g^λ affords a p-map, given by

$$(t, 0)^p = (t, 0), \ (x, 0)^p = (0, 0) = (y, 0)^p, \ \ (0, z)^p = (0, z).$$

Note that g^λ is generically toral with $\mu(g^\lambda) = 2 = 1 + \dim_k C(g^\lambda)$.

The subspace $h := k(x, 0) \oplus k(y, 0) \oplus k(z)$ is a p-ideal of g^λ, which is isomorphic to the Heisenberg algebra with toral center, and such that g/h is a torus. We therefore obtain $E(2, g^\lambda) = E(2, \sl(2)) = 0$, while $g^\lambda/C(g^\lambda) \cong b^{-1}_{\sl(2)}$.

Given $t \in \Tor(g)$ and $\alpha \in R_t$, we let

$g[\alpha] := \bigoplus_{i \in \mathbb{F}_p} g_{i\alpha}$

be the 1-section of g defined by α. Note that $g[\alpha]$ is a p-subalgebra of g such that $\mu(g[\alpha]) = \mu(g)$.

Lemma 4.2.3. If g is generically toral with $rk_p(g) = 1$, then the following statements hold:

1. If $p = 3$ and $r(g) \geq 2$, then $R_t \cup \{0\}$ is an F_3-vector space.

2. If $p \geq 5$, then
 a. $\rho(g) = 1$, and
 b. $\mu(g) = \dim_k C(g) + 1$.

Proof. Let $t \in \Tor(g)$ be a torus of maximal dimension and let $\alpha \in R_t$.

Suppose there is $\beta \in R_t \setminus F_3\alpha$. We pick $x_\alpha \in g_\alpha \setminus \{0\}$ and $x_\beta \in g_\beta \setminus \{0\}$. Proposition 4.2.1(2) implies that the adjoint representations of x_α and x_β induce injective linear maps

$$(*) \ \ f_{(\alpha, i, j)} : g_{\alpha + j\beta} \to g_{(i+1)\alpha + j\beta} ; \ f_{(\beta, i, j)} : g_{\alpha + j\beta} \to g_{\alpha + (j+1)\beta} \ (i, j) \in \mathbb{F}_p^2$$

unless $(\gamma, i, j) \in \{(\gamma, 0, 0), (\alpha, 1, 0), (\beta, 0, 1)\}$.

1. Let $p = 3$. Let $\beta \in R_t \setminus F_3\alpha$. In view of $(*)$, application of suitable $f_{(\beta, 1, i)}$ and $f_{(\alpha, i, 1)}$ implies $\{\alpha, \alpha + \beta, \alpha - \beta\} \cup \{\beta, \beta - \alpha\} \subseteq R_t$. Using first $f_{(\alpha, 1, -1)}$ and then $f_{(\alpha, -1, -1)}$, $f_{(\beta, -1, -1)}$ we thus obtain
\{-(\alpha + \beta), -\beta, -\alpha\} \subseteq R_t$, so that $F_3 \alpha \oplus F_3 \beta \subseteq R_t \cup \{0\}$. Hence $R_t \cup \{0\}$ is an F_3-vector space unless $R_t \subseteq F_3 \alpha = \{0, \alpha, -\alpha\}$. As $r(g) \geq 2$, our assertion follows.

(2) Let $\alpha \in R_t$ be a root such that $\dim_k g_\alpha = \rho(g) \geq 2$. Then Proposition 4.2.1(4) yields $R_t \subseteq \{\alpha, -\alpha, -2\alpha\}$. As $p \geq 5$, 2α is not a root, so that $g_\alpha \subseteq C_b(x_\alpha)$ for all $x_\alpha \in g_\alpha \setminus \{0\}$. This, however, contradicts Proposition 4.2.1(2).

If $\beta \in R_t \setminus F_p \alpha$, then the map

$$f(\alpha, 1, 2) \circ f(\beta, 1, 1) \circ f(\beta, 1, 0) : g_\alpha \longrightarrow g_2(\alpha + \beta)$$

is injective, so that $\{\alpha + \beta, 2(\alpha + \beta)\} \subseteq R_t$. The 1-section $g[\alpha + \beta]$ is a p-subalgebra such that $\rho(g[\alpha + \beta]) = 1 = rk_p(g[\alpha + \beta])$, while $\mu(g[\alpha + \beta]) = 1 + \dim_k C(g[\alpha + \beta])$. Lemma 4.2.2 thus yields $2(\alpha + \beta) = -(\alpha + \beta)$. As $p \geq 5$, we obtain a contradiction, whence $R_t \subseteq F_p \alpha$. This readily implies (2). \qed

The foregoing results readily yield Theorem A:

Theorem 4.2.4. Suppose that $p \geq 5$. Let $(g, [p])$ be generically toral and such that $rk_p(g) = 1$. Then we have

$$g/C(g) \cong sl(2), b_{sl(2)}, b_{sl(2)}^{-1};$$

with $C(g) \neq (0)$ in the latter case.

Proof. In view of Lemma 4.2.3(2) we have $\rho(g) = 1$ and $\mu(g) = 1 + \dim_k C(g)$. The result now follows from Lemma 4.2.2. \qed

Remark. It is well-known that the cohomology groups $H^2(g', k)$ vanish in case $g' \cong sl(2), b_{sl(2)}$. Hence the first two types of algebras mentioned in Theorem 4.2.4 are direct products $g = g' \times C(g)$ of the restricted Lie algebras g' and a toral centers, and with p-maps given by

$$(x, c)[p] = [x[p], c[p] + f(x)) \quad (x, c) \in g,$$

where $f : g' \longrightarrow C(g)$ is p-semilinear.

Using sandwich elements, the first author obtained the first part of the following result in his doctoral dissertation [8]:

Corollary 4.2.5. Suppose that $p \geq 5$ and let $(g, [p])$ be such that $rk_p(g) = 1$.

(1) If g is centerless, then $g \cong sl(2), b_{sl(2)}$.

(2) If g is not solvable, then $g/C(g) \cong sl(2)$.

Proof. (1) In view of Corollary 3.2, the Lie algebra g is generically toral. Since $C(g) = (0)$, Theorem 4.2.4 implies the result.

(2) Using Corollary 3.2 again, we see that g is generically toral. As $g/C(g)$ is not solvable, it follows from Theorem 4.2.4 that $g/C(g) \cong sl(2)$. \qed

Corollary 4.2.6. Suppose that $p \geq 5$. Let $(g, [p])$ be a restricted Lie algebra. If $r(g) \geq 3$, then $E(2, g) \neq \emptyset$.

Proof. Suppose that $E(2, g) = \emptyset$. If $rk_p(g) = 0$, then g is a torus and $r(g) = 0$, a contradiction. Hence $rk_p(g) = 1$, and Proposition 3.1 shows that g is generically toral. Theorem 4.2.4 thus yields $r(g) \leq 2$, a contradiction. \qed
4.3. The case $p=3$. It turns out that several results of the foregoing subsection do not hold for small p.
Throughout this section, we assume that $(\mathfrak{g}, [p])$ is a restricted Lie algebra, defined over an algebraically closed field k of characteristic $\text{char}(k)=3$.

Lemma 4.3.1. Let \mathfrak{g} be generically toral with $\text{rk}_p(\mathfrak{g}) = 1$. If $\rho(\mathfrak{g}) \geq 2$, then we have
\begin{enumerate}
\item $\mu(\mathfrak{g}) \geq \rho(\mathfrak{g})$ and $C(\mathfrak{g}) \neq (0)$.
\item \mathfrak{g} is solvable.
\end{enumerate}

Proof. We choose $t \in \text{Tor}(\mathfrak{g})$ and let $\alpha \in \text{Rt}_1$ be a root such that $\dim_k \mathfrak{g}_\alpha = \rho(\mathfrak{g})$. Proposition 4.2.1(4) ensures that $\text{Rt}_1 \subseteq \{\alpha, -\alpha\}$ and we therefore write
\[\mathfrak{g} = t \oplus \mathfrak{g}_\alpha \oplus \mathfrak{g}_{-\alpha}. \]

1. If $\mathfrak{g}_{-\alpha} = (0)$, then $\mathfrak{g}_\alpha \subseteq C_\alpha(x_\alpha)$ for $x_\alpha \in \mathfrak{g}_\alpha \setminus \{0\}$, which contradicts Proposition 4.2.1(2). Given $x_\alpha \in \mathfrak{g}_{-\alpha} \setminus \{0\}$, Proposition 4.2.1(2) implies that the map
\[\mathfrak{g}_\alpha \longrightarrow t : v \mapsto [x_\alpha, v] \]
is injective, so that $\mu(\mathfrak{g}) = \dim_k t \geq \dim_k \mathfrak{g}_\alpha = \rho(\mathfrak{g})$. Hence $\dim_k C(\mathfrak{g}) = \mu(\mathfrak{g})-1 \neq 0$.

2. Suppose that $[\mathfrak{g}_\alpha, \mathfrak{g}_{-\alpha}] \not\subseteq \ker \alpha$. We consider the Lie algebra $\mathfrak{g}' := \mathfrak{g}/\ker \alpha$. Writing $t = kt \oplus \ker \alpha$ for some toral element $t \in \mathfrak{t}$, we have
\[\mathfrak{g}' = kt' \oplus \mathfrak{g}_\alpha' \oplus \mathfrak{g}_{-\alpha}', \]
and our current assumption in conjunction with Lemma 1.2.2 provides $x_\alpha' \in \mathfrak{g}_\alpha'$ and $x_{-\alpha}' \in \mathfrak{g}_{-\alpha}'$ such that
\[h' := kt' \oplus kx_\alpha' \oplus kx_{-\alpha}' \]
is a p-subalgebra such that $h' \cong \mathfrak{sl}(2)$.
\[\mathbf{Example}. \text{ Consider the 5-dimensional vector space} \]
\[\mathfrak{h} := T(\mathfrak{h}) \oplus \mathfrak{h}_1 \oplus \mathfrak{h}_{-1}, \]
where $T(\mathfrak{h}) = kt_1 \oplus kt_2$, $\mathfrak{h}_1 := kx_1 \oplus kx_2$, and $\mathfrak{h}_{-1} = ky$. We define a Lie bracket via
\[[T(\mathfrak{h}), \mathfrak{h}] = (0) ; \quad [x_1, x_2] = y ; \quad [x_i, y] = t_i \quad 1 \leq i \leq 2, \]
and a p-map by means of
\[h_i^{[p]} = \{0\} \quad \text{and} \quad t_i^{[p]} = t_i \quad 1 \leq i \leq 2. \]
Direct computation shows that $V(\mathfrak{h}) = \mathfrak{h}_1 \oplus \mathfrak{h}_{-1}$ and $\mathbb{E}(2, \mathfrak{h}) = \emptyset$, so that $\text{rk}_p(\mathfrak{h}) = 1$. \hfill \qed
Now set $h_0 := T(h)$. Then
\[d : h \rightarrow h : \quad d|_{h_i} = i \text{id}_{h_i} \]
is a derivation of h such that $d(h^{[p]}) = (ad \cdot h)^{p-1}(d(h))$ for all $h \in h$ and $d^p = d$. Hence the semidirect sum $g := kd \ltimes h$ is a generically toral restricted Lie algebra with $\rho(g) = 2$ and $E(2, g) = E(2, h) = \emptyset$.

Let $(g, [p])$ be generically toral with maximal torus $t \in \text{Tor}(g)$. We say that a root $\alpha \in R_t$ is solvable, if its 1-section $g[\alpha]$ is solvable.

Proposition 4.3.2. Let $(g, [p])$ be a generically toral restricted Lie algebra such that $rk_p(g) = 1$. If $t \in \text{Tor}(g)$ is such that R_t contains a non-solvable root, then $g/C(g) \cong \mathfrak{sl}(2)$.

Proof. Let $\alpha \in R_t$ be non-solvable and suppose there in $\beta \in R_t \setminus \{\alpha, -\alpha\}$. Owing to Proposition 4.2.1(4), we have $\rho(g) = 1$ and Lemma 4.2.3(1) yields
\[F_3 \alpha \oplus F_3 \beta \subseteq R_t \cup \{0\}. \]
We consider the p-subalgebra
\[h := \bigoplus_{(i,j) \in \mathbb{F}_p^2} g_{i\alpha+j\beta}. \]
Then h is generically toral with $\mu(h) = \mu(g)$, $\rho(h) = 1$ and of p-rank $rk_p(h) = 1$. We consider the root space decomposition
\[h = t \oplus \bigoplus_{\gamma \in R'_t} h_\gamma, \]
where $R'_t = (F_3 \alpha \oplus F_3 \beta) \setminus \{0\} \subseteq R_t$. As $h[\gamma] = g[\gamma]$ for all $\gamma \in R'_t$, α is also a non-solvable root of R'_t.

Lemma 4.2.2 now implies $h[\alpha]/\ker\alpha \cong \mathfrak{sl}(2)$. Let $I \leq\leq h$ be an ideal such that $C(h) \subseteq I$. Then the space
\[I[\alpha] := \bigoplus_{i \in \mathbb{F}_3} I_{i\alpha} \]
is an ideal of $h[\alpha]$. As $h[\alpha]/\ker\alpha$ is simple, this implies
\[I[\alpha] \subseteq \ker\alpha \text{ or } I[\alpha] = h[\alpha]. \]
If $I[\alpha] = h[\alpha]$, then $t \subseteq I[\alpha] \subseteq I$ and $I = h$.

Alternatively, $I[\alpha] \subseteq \ker\alpha$, so that $I_{\alpha} = (0) = I_{-\alpha}$. Let $\gamma \in R'_t \setminus \{\alpha, -\alpha\}$ be such that $I_\gamma \neq (0)$. As $R'_t = (F_3 \alpha \oplus F_3 \beta) \setminus \{0\}$, there is $x \in h_{\alpha-\gamma} \setminus \{0\}$. Thanks to Proposition 4.2.1(2), the map
\[h_\gamma \rightarrow h_{\alpha} : \quad v \mapsto [x, v] \]
is injective, while $h_\gamma = I_\gamma$ and $[x, I_\gamma] \subseteq I_\alpha = (0)$. Hence we have $I_\gamma = (0)$ for all $\gamma \in R'_t$. This implies $I \subseteq t$ as well as $[I, h_\gamma] \subseteq I \cap h_\gamma = (0)$ for all $\gamma \in R'_t$, whence $I \subseteq \bigcap_{\gamma \in R'_t} \ker\gamma = C(h)$. We thus have $I = C(h)$ whenever $I[\alpha] \subseteq \ker\alpha$.

We consider the restricted Lie algebra $h' := h/C(h)$. By the above, h' is simple and Lemma 1.2.1 ensures that h' is generically toral. Since $C(h) = \ker\alpha \cap \ker\beta$, we have $\mu(h') = 2$. Let $\pi : h \rightarrow h'$ be the canonical projection and put $t' := \pi(t) \cong t/C(h)$. Every root $\gamma \in R'_t$ gives rise to a root $\gamma' \in R'_t$ such that $\gamma' \circ \pi = \gamma$. Thus, $R'_t \cup \{0\} = F_3 \alpha' \oplus F_3 \beta'$. It follows that
\begin{enumerate}[(a)]
\item $\dim_k h' = 10$, and
\item $h'[\alpha']/\ker\alpha' \cong \mathfrak{sl}(2)$, so that $[h'_{\alpha'}, h'_{-\alpha'}] \neq (0)$.
\end{enumerate}
Since \(h' \) is simple, we have \(h' = [h', h'] \) and there exists \(\gamma' \in R' \) such that \([h'_{\gamma'}, h'_{-\gamma'}] \not\subseteq [h'_{\alpha'}, h'_{-\alpha'}] \).
Thus, \(t' = [h'_{\gamma'}, h'_{-\gamma'}] \oplus [h'_{\alpha'}, h'_{-\alpha'}] \) and the proof of Lemma 4.2.3(1) implies that \(h' \) is generated by \(h'_{\alpha'} \oplus h'_{\gamma'} \). Hence \(h' \) is freely generated, and a consecutive application of Lemma 2.2 and Lemma 2.1 yields \(\text{rk}_p(h') = \text{rk}_p(h) = 1 \). Now Lemma 1.3.2 implies
\[
\dim_k h' \leq 3(2\mu(h')-1) = 9,
\]
a contradiction.

It follows that \(R_t \subseteq \{ \alpha, -\alpha \} \), so that \(g = g[\alpha] \) and \(g/C(g) \cong \text{sl}(2) \), by Lemma 4.2.2. \(\square \)

Lemma 4.3.3. Let \((g, [p])\) be generically toral of \(p \)-rank \(\text{rk}_p(g) = 1 \). Suppose that \(t \in \text{Tor}(g) \) is such that every root \(\alpha \in R_t \) is solvable. Then we have
\[
[g_{\alpha}, g_{-\alpha}] \subseteq C(g)
\]
for all \(\alpha \in R_t \). In particular, if \(C(g) = (0) \), then \(g \cong b_{\text{sl}(2)} \).

Proof. Suppose that there are \(\alpha, \beta \in R_t \) such that \(\beta \in R_t \setminus \{ \alpha, -\alpha \} \). Thanks to Proposition 4.2.1(4), we then have \(\rho(g) = 1 \).

We first assume that \(R_t \subseteq F_3\alpha \oplus F_3\beta \). Lemma 4.2.3(1) then implies that \(R_t \cup \{ 0 \} = F_3\alpha \oplus F_3\beta \). We consider the Lie algebra \(g' : = g/C(g) \) with its corresponding root space decomposition relative to \(t' \equiv t/C(g) \).

If \(\dim_k \sum_{\lambda \in R' / t'} [g'_{\lambda}, g'_{-\lambda}] = 2 \), then there are \(F_3 \)-independent roots \(\gamma', \delta' \in R' \) such that
\[
t' = [g'_{\gamma'}, g'_{-\gamma'}] \oplus [g'_{\delta'}, g'_{-\delta'}].
\]
Thus, \(g' \) is freely generated by \(g'_{\gamma'} \oplus g'_{\delta'} \), so that Lemma 2.2 and Lemma 2.1 yield \(\text{rk}_p(g') = 1 \). Since \(\dim_k g' = 10 \), this contradicts Lemma 1.3.2.

We therefore have \(\dim_k \sum_{\lambda \in R' / t'} [g'_{\lambda}, g'_{-\lambda}] \leq 1 \). Hence there is \(\lambda' \in R' \) such that
\[
[\gamma', \lambda'] \subseteq [g'_{\gamma'}, g'_{-\gamma'}]
\]
for every \(\gamma' \in R' \).

Let \(\gamma \in R_t \) be a root, \(\gamma' \in R' \) be the corresponding root. Since \(\gamma \) is solvable and \(g'_{-\gamma'} \neq (0) \), it follows from Lemma 4.2.2 that \(g[\gamma]/\ker \gamma \cong b_{\text{sl}(2)}^{-1} \). Thus, \([g_{\gamma}, g_{-\gamma}] \subseteq \ker \gamma \). The inclusion \((*)\) now implies
\[
[g'_{\gamma'}, g'_{-\gamma'}] \subseteq \ker \gamma' \cap \ker \lambda' = (0)
\]
for all \(\gamma' \in R' \setminus F_3\lambda'. \) Hence there is a basis \(\{ \gamma', \lambda' \} \) of \(R' \cup \{ 0 \} \) such that
\[
[g'_{\sigma'}, g'_{-\sigma'}] = (0)
\]
for \(\sigma' \in \{ \gamma', \lambda' \} \). Now let \(i, j \in \{ 1, -1 \} \). Then we have
\[
[g'_{\gamma' + j\lambda'}, g'_{-\gamma' - j\lambda'}] = [g'_{\gamma' + j\lambda'}, [g'_{-\gamma'} - j\lambda', g'_{-\gamma'}]] \subseteq [g'_{\gamma' + j\lambda'}, g'_{-\gamma'}] + [g'_{\gamma' + j\lambda'}, g'_{-\gamma'}] + [g'_{\gamma' + j\lambda'}, g'_{-\gamma'}] + [g'_{\gamma' + j\lambda'}, g'_{-\gamma'}] = (0),
\]
whence
\[
[g'_{\lambda'}, g'_{-\lambda'}] = (0) \quad \forall \lambda' \in R'.
\]
Consequently,
\[
[g_{\lambda}, g_{-\lambda}] \subseteq C(g) \quad \forall \lambda \in R_t.
\]
Let \(\alpha \in R_t \). If \(R_t \subseteq F_3\alpha \), and \(\rho(g) = 1 \), then our assertion follows directly from Lemma 4.2.2. If \(\rho(g) \geq 2 \), then the proof of Lemma 4.3.1 gives \([g_{\alpha}, g_{-\alpha}] \subseteq C(g) \).
Alternatively, let $\beta \in R_t \setminus F_2 \alpha$. Considering the p-subalgebra
\[g[\alpha, \beta] := \bigoplus_{(i,j) \in F_3^2} g_{\alpha+i\beta}, \]
we obtain from the above
\[[g_\alpha, g_{-\alpha}] \subseteq \ker \alpha \cap \ker \beta. \]
Thus, $[g_\alpha, g_{-\alpha}] \subseteq \ker \alpha \cap \ker \beta$.

4.4. Lie algebras of characteristic $p \geq 3$. We provide results that hold for $p \geq 3$.

Theorem 4.4.1. Let $(g, [p])$ be a restricted Lie algebra such that $rk_p(g) = 1$. Then the following statements hold:

1. If g is centerless, then $g \cong b_{sl(2)} , sl(2)$.
2. If g is perfect, then $g \cong sl(2)$.

Proof. (1) In view of Corollary 3.2, the algebra g is generically toral. Let $t \in Tor(g)$ be a torus of maximal dimension. If $p \geq 5$, then Corollary 4.2.5 implies our assertion. If $p = 3$ and every root $\alpha \in R_t$ is solvable, then Lemma 4.3.3 yields $g \cong b_{sl(2)}$. Alternatively, Proposition 4.3.2 implies $g \cong sl(2)$.

(2) Since g is perfect, it is not solvable, so that Corollary 3.2 shows that g is generically toral. For $p \geq 5$, the result is a consequence of Theorem 4.2.4.

Let $p = 3$ and consider $t \in Tor(g)$. If every root $\alpha \in R_t$ is solvable, then the Lemma 4.3.3 implies
\[g = [g,g] = \sum_{\alpha \in R_t} [g_\alpha, g_{-\alpha}] \oplus \bigoplus_{\alpha \in R_t} g_\alpha \subseteq C(g) \oplus \bigoplus_{\alpha \in R_t} g_\alpha. \]
Thus, $t = C(g)$, so that g is nilpotent, a contradiction.

Hence there is a non-solvable root $\alpha \in R_t$, and Proposition 4.3.2 yields $g/C(g) \cong sl(2)$. Since $H^2(sl(2), k) = (0)$, we have $g \cong sl(2) \oplus C(g)$, whence $g = [g, g] = sl(2)$. \qed

Corollary 4.4.2. Let $(g, [p])$ be a restricted Lie algebra of p-rank 1 and such that $T(g) = (0)$. Then
\[g \cong sl(2), b_{sl(2)}, kt \ltimes (kx)_p, \]
where t is toral and $x \neq 0$ is p-nilpotent.

Proof. Since $T(g) = (0)$, the center $C(g)$ is unipotent. If $C(g) = (0)$, then Theorem 4.4.1 yields $g \cong b_{sl(2)}, sl(2)$. Alternatively, $V(C(g)) \neq \{0\}$ and since $rk_p(g) = 1$, it follows that $V(g) = V(C(g))$ is a line. Hence
\[g \cong kt \ltimes (T(g) \oplus (kx)_p), \]
with t toral and x p-nilpotent, cf. [16, (3.2),(4.3)]. Since $T(g) = (0)$, g is an algebra of the third type. \qed

Remark. In view of Brauer’s results for finite groups [4, 5], one would hope to determine $g/T(g)$ for any restricted Lie algebra of p-rank $rk_p(g) = 1$. Contrary to finite groups, where $rk_p(G/O_p(G)) = rk_p(G)$, the example of the Heisenberg algebra with toral center shows that the p-rank of $g/T(g)$ may exceed $rk_p(g)$.
5. Finite group schemes of p-rank ≤ 1

In this concluding section, we consider finite group schemes of p-rank ≤ 1. The reader is referred to [32] and [42] for basic facts concerning algebraic group schemes. Given a finite group scheme \mathcal{G} over k, we denote by $k[\mathcal{G}]$ and $k\mathcal{G} := k[\mathcal{G}]^*$, the coordinate ring and the group algebra (the algebra of measures) of \mathcal{G}, respectively. In what follows, all subgroup schemes are supposed to be closed.

Following [21], we refer to an abelian finite group scheme \mathcal{E} as elementary abelian, provided there exist subgroup schemes $\mathcal{E}_1, \ldots, \mathcal{E}_n \subseteq \mathcal{E}$ such that

(a) $\mathcal{E} = \mathcal{E}_1 \cdot \ldots \cdot \mathcal{E}_n$, and
(b) $\mathcal{E}_i \cong \mathbb{G}_{a(r_i)}, \mathbb{Z}/(p)$.

Here $\mathbb{G}_{a(r)}$ denotes the r-th Frobenius kernel of the additive group $\mathbb{G}_a = \text{Spec}_k(k[T])$, while $\mathbb{Z}/(p)$ refers to the reduced group scheme, whose group of k-rational points is the cyclic group $\mathbb{Z}/(p)$. In view of [21, (6.2.1),(6.2.2)], a finite group scheme \mathcal{E} is elementary abelian if and only if $k\mathcal{E} \cong k[T_1, \ldots, T_r]/(T_1^p, \ldots, T_r^p)$. We call $\text{rk}_p(\mathcal{E}) := r$ the p-rank of \mathcal{E}, so that $\dim_k k\mathcal{E} = p^{\text{rk}_p(\mathcal{E})}$.

Definition. Let \mathcal{G} be a finite group scheme. Then

$$\text{rk}_p(\mathcal{G}) := \max\{\text{rk}_p(\mathcal{E}) ; \mathcal{E} \subseteq \mathcal{G} \text{ elementary abelian}\}$$

is called the p-rank of \mathcal{G}.

Remarks. (1) Let $(g, [p])$ be a restricted Lie algebra. Then $\mathcal{G}_g := \text{Spec}_k(U_0(g)^*)$ is an infinitesimal group of height 1 such that $k\mathcal{G}_g = U_0(g)$. It follows from the above that $\text{rk}_p(\mathcal{G}_g) = \text{rk}_p(g)$, cf. also [11, (IV,§7, n°4)].

(2) If G is a finite group, then the p-rank of G coincides with that of its associated reduced group scheme $\mathcal{G}_G := \text{Spec}_k(kG^*)$.

Example. By way of illustration, we begin by considering the case, where $\mathcal{G} = G_r$ is the r-th Frobenius kernel of an algebraic group G. If G is not a torus, then the arguments employed in the proof of Theorem 4.1.1 provide a connected unipotent subgroup $e_k \neq U \subseteq G$. According to [11, (IV,§4,3.4)] U contains a subgroup of type \mathbb{G}_a, so that $\mathbb{G}_{a(r)} \subseteq G_r$ and $r = \text{rk}_p(\mathbb{G}_{a(r)}) \leq \text{rk}_p(G_r)$. Consequently, $\text{rk}_p(G_r) \leq 1$ only if $r = 1$ or $G_r \cong \mathbb{G}_{a(r)}$ is diagonalizable. Since G_1 corresponds to $g = \text{Lie}(G)$, Theorem 4.1.1 provides the structure of Frobenius kernels of p-rank 1.

We recall basic features from the Friedlander-Pevtsova theory of p-points [28]. Let $\mathfrak{A}_p := k[T]/(T^p)$ be the p-truncated polynomial ring in one variable. Given a finite group scheme \mathcal{G}, an algebra homomorphism $\alpha : \mathfrak{A}_p \rightarrow k\mathcal{G}$ is called a p-point, provided

(P1) the map α is left flat, and

(P2) there exists an abelian unipotent subgroup $\mathfrak{U} \subseteq \mathcal{G}$ such that $\text{im} \alpha \subseteq k\mathfrak{U}$.

We let $\text{Pt}(\mathcal{G})$ be the set of p-points of \mathcal{G}. Every $\alpha \in \text{Pt}(\mathcal{G})$ defines an exact functor

$$\alpha^* : \text{mod} k\mathcal{G} \rightarrow \text{mod} \mathfrak{A}_p$$

between the respective categories of finite-dimensional modules, which, in view of (P1), sends projectives to projectives. Hence the full subcategory $\text{mod}^{\alpha^*} k\mathcal{G}$, with objects being those \mathcal{G}-modules whose pullback $\alpha^*(M)$ along α is projective, contains all projective \mathcal{G}-modules. Two p-points $\alpha, \beta \in \text{Pt}(\mathcal{G})$ are equivalent ($\alpha \sim \beta$), if $\text{mod}^{\alpha^*} k\mathcal{G} = \text{mod}^{\beta^*} k\mathcal{G}$. We denote by $P(\mathcal{G}) := \text{Pt}(\mathcal{G})/\sim$ the space of p-points. Thanks to [28, (3.10)], $P(\mathcal{G})$ is a noetherian topological space, whose closed sets are of the form

$$P(\mathcal{G})_M := \{[\alpha] \in P(\mathcal{G}) ; \alpha^*(M) \text{ is not projective}\} \quad (M \in \text{mod} \mathcal{G})$$
Let $\mathcal{H} \subseteq \mathcal{G}$ be a subgroup scheme. The canonical inclusion $\iota : k\mathcal{H} \rightarrow k\mathcal{G}$, defines a continuous map $\iota_* : \text{P}(\mathcal{H}) \rightarrow \text{P}(\mathcal{G})$: $[x] \mapsto [\iota \circ x]$.

Recall that every finite group scheme \mathcal{G} is a semi-direct product $\mathcal{G} = \mathcal{G}^0 \ltimes \mathcal{G}_{\text{red}}$ of an infinitesimal normal subgroup \mathcal{G}^0 and a reduced subgroup, see [42, (6.8)]. Given $r \in \mathbb{N}_0$, we denote by $\mathcal{G}_r = (\mathcal{G}^0)_r$, the r-th Frobenius kernel of \mathcal{G}. In particular, we have $\mathcal{G}_0 = e_k$.

Let \mathcal{G} be a finite group scheme of p-rank $\text{rk}_p(\mathcal{G}) = 1$. Then $\text{rk}_p(\mathcal{G}^0) = 0 = \text{rk}_p(\mathcal{G}_{\text{red}})$ and $p \nmid \text{ord}(\mathcal{G}(k))$.

Moreover, [11, (IV,§3,(3.7))] shows that \mathcal{G}^0 is diagonalizable. By Nagata’s Theorem [11, (IV,§3, (3.6)], these properties of \mathcal{G} are equivalent to $k\mathcal{G}$ being semi-simple. In that case, we say that \mathcal{G} is linearly reductive.

Lemma 5.1. Let \mathcal{G} be a finite group scheme of p-rank $\text{rk}_p(\mathcal{G}) = 1$.

1. If $\mathcal{E} \subseteq \mathcal{G}$ is elementary abelian, then $\mathcal{E} \leq \mathcal{G}_1 \times \mathcal{G}_{\text{red}}$.
2. We have $\text{P}(\mathcal{G}) = \iota_* (\text{P}(\mathcal{G}_1 \times \mathcal{G}_{\text{red}}))$.

Proof. (1) We write $\mathcal{E} = \mathcal{E}^0 \times \mathcal{E}_{\text{red}}$, with each factor being elementary abelian, cf. [21, (6.2.2)]. Since \mathcal{E}^0 does not contain any reduced subgroup schemes $\neq e_k$, it follows that \mathcal{E}^0 is a product of groups of type $\mathbb{G}_a(r_i)$. In view of

$$r_i = \text{rk}_p(\mathbb{G}_a(r_i)) \leq \text{rk}_p(\mathcal{E}) \leq 1,$$

each factor of \mathcal{E}^0 is contained in \mathcal{G}_1, whence $\mathcal{E}^0 \subseteq \mathcal{G}_1$. Consequently, [18, (1.1)] yields $\mathcal{E} \subseteq \mathcal{G}_1 \times \mathcal{G}_{\text{red}}$.

(2) Let $x \in \text{P}(\mathcal{G})$. Thanks to [28, (4.2)], there exist $\alpha \in x$ and an elementary abelian subgroup $\mathcal{E} \subseteq \mathcal{G}$ such that $\text{im } \alpha \subseteq \mathcal{E}$. In view of (1), this shows that $x \in \iota_* (\text{P}(\mathcal{G}_1 \times \mathcal{G}_{\text{red}}))$. \hfill \Box

Given an infinitesimal group \mathcal{G}, we denote by $\mathcal{M}(\mathcal{G})$ the unique largest diagonalizable (multiplicative) normal subgroup of \mathcal{G}. In view of [42, (7.7),(9.5)], the group scheme $\mathcal{M}(\mathcal{G})$ coincides with the multiplicative constituent of the center $\mathcal{C}(\mathcal{G})$ of \mathcal{G}.

For a commutative unipotent infinitesimal group scheme \mathcal{U}, we let

$$V_{\mathcal{U}} : \mathcal{U}^{(p)} \longrightarrow \mathcal{U}$$

be the Verschiebung, cf. [11, (IV,§3,n°4),(II,§7,n°1)]. Following [24], we refer to \mathcal{U} as being V-uniserial, provided there is an exact sequence

$$\mathcal{U}^{(p)} \xrightarrow{V_{\mathcal{U}}} \mathcal{U} \longrightarrow \mathbb{G}_a(1) \longrightarrow e_k.$$

If \mathcal{U} is V-uniserial, then the complexity $\text{cx}_{\mathcal{U}}(k)$ of the trivial \mathcal{U}-module k equals 1, cf. [24, (2.6)]. Thus, if $\mathcal{E} \subseteq \mathcal{U}$ is elementary abelian, then

$$\text{rk}_p(\mathcal{E}) = \text{cx}_{\mathcal{E}}(k) \leq \text{cx}_{\mathcal{U}}(k) \leq 1,$$

so that $\text{rk}_p(\mathcal{U}) = 1$.

The r-th Frobenius kernel of the multiplicative group $\mathbb{G}_m := \text{Spec}_k(k[X, X^{-1}])$ will be denoted $\mathbb{G}_{m(r)}$. We let $T \subseteq \text{SL}(2)$ be the standard torus of diagonal matrices.

Proposition 5.2. Let \mathcal{G} be an infinitesimal k-group of p-rank $\text{rk}_p(\mathcal{G}) = 1$. If $\mathcal{M}(\mathcal{G}) = e_k$, then

$$\mathcal{G} \cong \text{SL}(2)_r T, \mathcal{U} \times \mathbb{G}_{m(r)} \quad (r \geq 0),$$

where \mathcal{U} is a V-uniserial normal subgroup of \mathcal{G} and $\mathbb{G}_{m(r)}$ acts faithfully on \mathcal{U}.

Proof. Let $\mathcal{M}(G_1)$ be the multiplicative center of G_1. In view of [11, (IV,§3,(1.1))], $\mathcal{M}(G_1)$ is a normal, multiplicative subgroup of G, so that $\mathcal{M}(G_1) \subseteq \mathcal{M}(G) = e_k$. As a result, the toral radical $T(g)$ of the Lie algebra $g := \text{Lie}(G)$ is trivial and Corollary 4.4.2 yields $g = \text{sl}(2)$ or $\dim V(g) = 1$.

Suppose that $\dim V(g) = 1$, and let $V(G)$ be the variety k-rational points of the scheme of infinitesimal one-parameter subgroups of G, cf. [39]. In view of [39, (1.5)], a closed embedding $\mathcal{H} \hookrightarrow G$ yields a closed embedding $V(\mathcal{H}) \hookrightarrow V(G)$. It now follows from [28, (3.8)], that the canonical map

$$\iota_* : P(G_1) \longrightarrow P(G)$$

is injective, while [28, (4.11)] implies that ι_* is closed. Owing to [28, (4.11)], [40, (6.8)] and [39, (1.6)] we have

$$\dim \text{Proj}(V(G)) = \dim P(G)$$

so that Lemma 5.1 yields $\dim V(G) = 1$. Now [24, (2.7)] provides a decomposition $G \cong G \times G_m(r)$, where U is a G-uniserial normal subgroup of G and $r \geq 0$. Since the multiplicative center $\mathcal{M}(G \times G_m(r))$ is assumed to be trivial, the group $G_m(r)$ acts faithfully on U.

We therefore assume that $G_1 \cong G \times G_m$, so that $G_1(E_1) = e_k$. We consider the centralizer $G_1(E_1)$ of G_1 in G. Since $G(G_1) = G(E_1) = e_k$, it follows that $G_1(E_1) = e_k$. The adjoint representation thus provides a closed embedding

$$\varrho : G \hookrightarrow \mathcal{AUT}(\text{sl}(2)) \cong \text{PSL}(2)$$

from G into the automorphism scheme $\mathcal{AUT}(\text{sl}(2))$. As G is infinitesimal, ϱ factors through a suitable Frobenius kernel of $\text{PSL}(2)$. Since $\text{PSL}(2)$ is a factor of $\text{SL}(2)$ by an étale normal subgroup, the Frobenius kernels of $\text{SL}(2)$ and $\text{PSL}(2)$ are isomorphic, so that there exists a closed embedding

$$G \hookrightarrow \text{SL}(2),$$

where $s = \text{ht}(G)$ is the height of G. Note that $G_1 \subseteq \text{SL}(2)_1$, while $\text{Lie}(G) = \text{sl}(2)$. This implies that $\text{SL}(2)_1 \subseteq G$. Hence we may assume that G is a subgroup of $\text{SL}(2)$ such that $G_1 = \text{SL}(2)_1$.

We denote by $F : \text{SL}(2) \longrightarrow \text{SL}(2)$ the Frobenius endomorphism of $\text{SL}(2)$. Note that F induces an embedding $F : G_1 \hookrightarrow \text{SL}(2)$. Let $E \subseteq G/G_1$ be elementary abelian. Since $G/G_1 \hookrightarrow G^{(p)}$ has p-rank ≤ 1, Lemma 5.1 shows that E has height ≤ 1. Hence there is $g \in \text{SL}(2)(k)$ such that $gF(E)g^{-1} \subseteq U_1$, the first Frobenius kernel of the group $U \cong G_a$ of strictly upper triangular unipotent matrices. Since $g = F(h)$ for some $h \in \text{SL}(2)(k)$, passage to hG_1h^{-1} allows us to assume that $E \subseteq U_2/U_1$. Let $\pi : G \longrightarrow G/G_1$ be the canonical projection and put $\mathcal{H} := \pi^{-1}(E)$. Then $\text{ht}(\mathcal{H}) \leq 2$, and we have $\text{SL}(2)_1 \subseteq \mathcal{H} \subseteq \text{SL}(2)_1U_2 \cap G$. Thus, if $E \neq e_k$, then $\mathcal{H} = \text{SL}(2)_1U_2$, whence $\text{SL}(2)_1U_2 \subseteq G$. This implies

$$\text{rk}_p(G) \geq \text{rk}_p(\text{SL}(2)_1U_2) \geq \text{rk}_p(U_2) \geq 2,$$

a contradiction. Consequently, $E = e_k$, so that [11, (IV,§3,(3.7)] ensures that G/G_1 is diagonalizable. According to [25, (5.4)] this implies that

$$G = \text{SL}(2)_1T_r$$

for $r = \text{ht}(G)$.\hfill\Box

Remark. The G-uniserial group schemes were classified in [22].

Given a finite group scheme G, we let G_{tr} be the largest linearly reductive normal subgroup of G, see [41, (1.2.37)]. If G is a reduced finite group scheme, then G_{tr} corresponds to the largest normal subgroup $O_(G(k))$ of the finite group $G(k)$, whose order is prime to p.

Being a characteristic subgroup of G^0, the multiplicative center $\mathcal{M}(G^0)$ is a normal subgroup of G. Hence G_{red} acts on $G^0/\mathcal{M}(G^0)$, and we put

$$C_{G} := \text{Cent}_{G_{\text{red}}}(G^0/\mathcal{M}(G^0)).$$
In the sequel, we let \mathcal{W}_n be the group scheme of Witt vectors of length n, cf. [11, (V, §1, n = 1.6)].

To a finite subgroup scheme $G \subseteq \text{SL}(2)$, we associate the group $\mathbb{P}(G) := G/(G \cap \mathcal{C}(\text{SL}(2)))$. A linearly reductive subgroup scheme $G \subseteq \text{SL}(2)$ will be referred to as a binary polyhedral group scheme, see [18] for a classification of these groups.

An associative algebra A is said to be representation-finite, provided there are only finitely many isoclasses of indecomposable Λ-modules. We say that A is domestic, provided Λ is not representation-finite, and there exist $(\Lambda, k[T])$-bimodules X_1, \ldots, X_m that are free of finite rank over $k[T]$ such that for every $d \geq 1$, all but finitely many isoclasses of d-dimensional indecomposable Λ-modules are of the form $[X_i \otimes_{k[T]} k[T]/(T - \lambda)^i]$, for some $i \in \{1, \ldots, m\}, j \in \mathbb{N}$ and $\lambda \in k$, cf. [36].

Theorem 5.3. Suppose that G is a finite group scheme such that $G_{1r} = e_k$. If $\text{rk}_p(G) = 1$, then one of the following alternatives occurs:

(a) $G = G_{\text{red}}$, and the finite group $G(k)$ has p-rank 1 and $O_p'(G(k)) = \{1\}$.

(b) There is a binary polyhedral group scheme $G \subseteq \text{SL}(2)$ such that $G \cong \mathbb{P}(\text{SL}(2), \tilde{G})$.

(c) $G = U \times G_{\text{red}}$, where U is V-uniserial of height $\text{ht}(U) \geq 2$ and $G(k)$ is cyclic and such that $p \mid \text{ord}(G(k))$.

(d) $G = ((\mathcal{W}_n) \times G_{m(r)}) \times G_{\text{red}}$, where $G(k)$ is abelian $p \mid \text{ord}(G(k))$.

Proof. We first verify the following identity:

\[(*) \quad \text{rk}_p(G^0) + \text{rk}_p(G_{\text{red}}) = 1.\]

By assumption, we have $\text{rk}_p(G^0) \leq 1$ and $\text{rk}_p(G_{\text{red}}) \leq 1$. Suppose that both p-ranks are equal to 1. Owing to [18, (1.2)], we have

\[e_k = G_{1r} = M(G^0) \times O_p'(G^0).\]

Proposition 5.2 now shows that $G^0 \cong \text{SL}(2)_1 T$, or $\dim V(G^0) = 1$. In the latter case, the arguments of [24, (3.1,2b)] ensure the existence of an elementary abelian subgroup $E \cong G_{a(1)} \times \mathbb{Z}/(p)$ of rank 2, a contradiction.

Hence we have $G_1 \cong \text{SL}(2)_1$. Let $e_k \neq E \subseteq G_{\text{red}}$ be elementary abelian. Then the p-elementary abelian group $E(k)$ acts on $\text{sl}(2) = \text{Lie}(G)$. Since $\text{rk}_p(G) = 1$, this action is faithful, so that $E(k) \subseteq \text{PSL}(2)(k)$. Being a p-group, $E(k)$ is conjugate to a subgroup of strictly upper triangular matrices. Consequently, $V(\text{sl}(2))E(k) \neq \{0\}$, so that there is a subgroup of type $G_{a(1)} \times E$ of rank ≥ 2, a contradiction. Consequently,

\[\text{rk}_p(G^0) + \text{rk}_p(G_{\text{red}}) = 1,\]

as desired. (*)

If $\text{rk}_p(G^0) = 0$, then G^0 is diagonalizable, so that $G^0 = M(G^0) = e_k$. Consequently,

\[e_k = O_p'(G^0) = O_p'(G(k)),\]

and (a) holds.

Alternatively, identity (*) forces the group scheme G_{red} to be linearly reductive, implying $G_{G^0} = e_k$ and that G_{red} acts faithfully on G^0. By the same token, the group G^0 has p-rank 1, while $M(G^0) = e_k$.

Thanks to Proposition 5.2, we obtain $G^0 \cong \text{SL}(2)_1 T$ or $G^0 \cong U \times G_{m(r)}$, with $G_{m(r)}$ acting faithfully on U.

Assuming $G^0 = \text{SL}(2)_1 T$, it follows from [25, (5.6)] that the algebra $k[G^0]$ has domestic representation type. According to [20, (4.4)], kG is representation-finite or domestic. In view of [24, (2.7),(3.1)], the former alternative does not occur. We may now apply [20, (4.7)] to see that G is of type (b).

We finally consider the case, where $G^0 = U \times G_{m(r)}$, where U is V-uniserial. Note that the finite group $G := G(k)$ acts on the unipotent radical U of G^0 (cf. [11, (IV, §2, (3.3)]) and hence on kU. However, $kU \cong k[X]/(X^n)$ is uniserial, whence $\dim_k \text{Rad}^i(kU)/\text{Rad}^{i+1}(kU) = 1$. Consequently, kU is a direct
sum of one-dimensional G-modules, and there exists a group homomorphism $\zeta : G \to k^\times$ such that $k\mathcal{U} = k[x]$, where $x \in k\mathcal{U}_\zeta$ is a weight vector such that $x^p = 0$. This yields
\[
(**) \quad k\mathcal{U} = \bigoplus_{i=0}^{p^n-1} k\mathcal{U}_{\zeta_i},
\]
so that $\ker \zeta$ acts trivially on $k\mathcal{U}$ and hence on \mathcal{U}.

The group G also acts on $\mathbb{G}_m(r) \cong \mathbb{G}_m^r / \mathcal{U}$. There results an action of G on the character group $X(\mathbb{G}_m(r)) \cong \mathbb{Z} / (p^r)$ via automorphisms. This implies that (G, G) acts trivially on $X(\mathbb{G}_m(r))$ and thus on $\mathbb{G}_m^r / \mathcal{U}$. Observe that $\text{Rad}(kG^0) = kG^0 \text{Rad}(k\mathcal{U})$ is the radical of kG^0, whose factor algebra is isomorphic to $k(\mathbb{G}_m^r / \mathcal{U})$, cf. [19, (1.23)]. Since $\text{Rad}(kG^0)^i = kG^0 \text{Rad}(k\mathcal{U})^i$, it follows that the multiplication induces surjections
\[
k(\mathbb{G}_m^r / \mathcal{U}) \otimes_k (\text{Rad}(k\mathcal{U})^i / \text{Rad}(k\mathcal{U})^{i+1}) \twoheadrightarrow \text{Rad}(kG^0)^i / \text{Rad}(kG^0)^{i+1}
\]
of G-modules, so that $(**)$ implies that the right-hand spaces are trivial (G, G)-modules. Since (G, G) is linearly reductive, we conclude that (G, G) acts trivially on kG^0 and hence on \mathbb{G}_m^r. As G also acts faithfully on \mathbb{G}_m^0, the group G is abelian.

If \mathcal{U} has height $\ell(\mathcal{U}) \geq 2$, then [23, (3.1)] implies that $\mathbb{G}_m(r)$ acts trivially on \mathcal{U}. Thus, $\mathbb{G}_m^r = \mathcal{U}$, so that $(**)$ yields $\ker \zeta = \{1\}$. Consequently, G is a subgroup of k^\times and hence cyclic. This shows that (c) holds.

If \mathcal{U} has height 1, then [23, (3.2)] yields $\mathcal{U} \cong (\mathbb{W}_n)_1$ for some n, so that \mathcal{S} is of type (d). \hfill \square

As a by-product, we obtain the following characterization of finite group schemes of finite- or domestic representation type.

Corollary 5.4. Let \mathcal{S} be a finite group scheme. Then the following statements are equivalent:

1. \mathcal{S} is representation-finite or domestic.
2. $\text{rk}_p(\mathcal{S} / \mathcal{S}_1) \leq 1$.

Proof. Let $\mathcal{S}' := \mathcal{S} / \mathcal{S}_1$. According to [18, (1.1)], there is an isomorphism $\mathcal{B}_0(\mathcal{S}) \cong \mathcal{B}_0(\mathcal{S}')$ between the principal blocks of $k\mathcal{S}$ and $k\mathcal{S}'$. A twofold application of [24, (3.1)] and [20, (4.7)] now implies that \mathcal{S} is representation-finite or domestic if and only if \mathcal{S}' enjoys this property. The assertion now follows from Theorem 5.3 in conjunction with [24, (2.7),(3.1)] and [20, (4.7)]. \hfill \square

References

