BV functions in a Gelfand triple and the
stochastic reflection problem on a convex set of a
Hilbert space

Fonctions BV dans triplet de Gelfand et le
probleme de reflexion sur un ensemble convexe
d’un espace de Hilbert

Michael Röcknera, Rongchan Zhub, Xiangchan Zhuc, †

aDepartment of Mathematics, University of Bielefeld, D-33615 Bielefeld, Germany,
bInstitute of Applied Mathematics, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China,
cSchool of Mathematical Sciences, Peking University, Beijing 100871, China

Abstract

In this note we introduce BV functions in a Gelfand triple, which is an extension of BV functions in [1], by using Dirichlet form theory. By this definition, we can consider the stochastic reflection problem associated with a self-adjoint operator A and a cylindrical Wiener process on a convex set Γ. We prove the existence and uniqueness of a strong solution of this problem when Γ is a regular convex set. The result is also extended to the non-symmetric case. Finally, we extend our results to the case when $\Gamma = K_\alpha$, where $K_\alpha = \{f \in L^2(0,1) | f \geq -\alpha\}, \alpha \geq 0$

Résumé.

Dans ce papier, on introduit des fonctions BV dans un triplet de Gelfand qui est une extension de fonctions BV dans [1] en utilisant la forme de Dirichlet. Par cette définition, on peut considérer le problème de réflexion stochastique associé à un opérateur auto-adjoint A et un processus de Wiener cylindrique sur un ensemble convexe Γ. Nous démontrons l’existence et l’unicité d’une solution forte de ce problème si Γ et un ensemble convexe régulier. Le résultat est aussi étendu au cas non-symétrique. Finalement, nous utilisons les fonctions BV dans le cas $\Gamma = K_\alpha$, où $K_\alpha = \{f \in L^2(0,1) | f \geq -\alpha\}, \alpha \geq 0$.

1. Dirichlet form and BV functions——Given a real separable Hilbert space H(with scalar product $\langle \cdot, \cdot \rangle$ and norm denoted by $|\cdot|$), assume that:

*Research supported by 973 project, NSFC, key Lab of CAS, the DFG through IRTG 1132 and CRC 701 and the I.Newton Institute, Cambridge, UK

†E-mail address: roeckner@mathematik.uni-bielefeld.de(M. Röckner), zhurongchan@126.com(R. C. Zhu), zhuxiangchan@126.com(X. C. Zhu)
Theorem 1.2. Let \(\rho \in QR(H) \). Then \((E^\rho, F^\rho)\) is a quasi-regular local Dirichlet form on \(L^2(F; \rho \cdot \mu) \) in the sense of [6, IV Definition 3.1].

By virtue of Theorem 1.2 and [6], there exists a diffusion process \(M^\rho = (X_t, P_t) \) on \(F \) associated with the Dirichlet form \((E^\rho, F^\rho)\). \(M^\rho \) will be called distorted OU process on \(F \). Since constant functions are in \(F^\rho \) and \(E^\rho(1,1) = 0 \), \(M^\rho \) is recurrent and conservative. Let \(A_{1/2} (x) := \int_{\mathbb{R}} (\log(1+s))^{1/2} dx, 0 \geq s \) and let \(\psi \) be its complementary function, namely, \(\psi(y) := \int_{0}^{y} (A_{1/2}^{-1}(t)dt = \int_{0}^{y} \exp(t^2) - 1)dt \). Define \(L(\log L)^{1/2} := \{ f | A_{1/2} (f) \in L^1 \} \), \(L^\rho := \{ g | \psi(g) \in L^1 \} \) for some \(c > 0 \) (cf.[7]). Let \(c_j \), \(j \in \mathbb{N} \), be a sequence in \([1, \infty)\). Define \(H_1 := \{ x \in H | \int_{\mathbb{R}} c_j (x, e_j) e_j < \infty \} \), equipped with the inner product \((x, y)_{H_1} := \sum_{j=1}^{\infty} c_j (x, e_j) (y, e_j) \). Then clearly \((H_1, \langle \cdot, \cdot \rangle_{H_1})\) is a Hilbert space such that \(H_1 \subset H \) continuously and densely. Identifying \(H \) with its dual we obtain the continuous and dense embeddings \(H_1 \subset H(\equiv H^* \subset H_1^* \). It follows that \(H_1, H, H_1^* \) is a Gelfand triple. We also introduce a family of \(H \)-valued function on \(H \) by

\[
(C^1_0)_{D(A) \cap H_1} = \{ G : G(z) = \sum_{j=1}^{m} g_j(z) e_j | g_j \in C^1_0(H), e_j \in D(A) \cap H_1 \}
\]

Denote by \(D^* \) the adjoint of \(D : C^1_0(H) \subset L^2(H, \mu) \to L^2(H, \mu; H) \). For \(\rho \in L(\log L)^{1/2}(H, \mu) \), we put \(V(\rho) := \sup_{G \in (C^1_0)_{D(A) \cap H_1}, \|G\|_{H_1} \leq 1} \int_H D^* G(z) \rho(z) \mu(dz) \). A function \(\rho \) on \(H \) is called a BV function in the Gelfand triple \((H_1, H, H_1^*)\) (denoted \(\rho \in BV(H, H_1) \) in notation), if \(\rho \in L(\log L)^{1/2}(H, \mu) \) and \(V(\rho) \) is finite. When \(H_1 = H = H_1^* \), this coincides with the definition of BV functions defined in [1] and clearly \(BV(H, H) \subset BV(H, H_1) \). This definition is a modification of BV function in abstract Wiener space introduced in [3] and [4].

Theorem 1.3. (i) Suppose \(\rho \in BV(H, H_1) \cap L^1(H, \mu) \), then there exist a positive finite measure \(\|d\rho\| \) on \(H \) and a Borel-measurable map \(\sigma_\rho : H \to H_1^* \) such that \(\|\sigma_\rho(z)\|_{H_1} = 1 \cdot \|d\rho\| - a.e. \), \(V(\rho) = \|d\rho\|(H) \).

\[
\int_H D^* G(z) \rho(z) \mu(dz) = \int_H H_1(G(z), \sigma_\rho(z))_{H_1^*} \|d\rho\|(dz), \forall G \in (C^1_0)_{D(A) \cap H_1}.
\]

Further, if \(\rho \in QR(H) \), \(\|d\rho\| \) is \(E^\rho \)-smooth, also, \(\sigma_\rho \) and \(\|d\rho\| \) are uniquely determined.

(ii) Conversely, if Eq.(1.1) holds for \(\rho \in L(\log L)^{1/2}(H, \mu) \) and for some positive finite measure \(\|d\rho\| \) and a map \(\sigma_\rho \) with the stated properties, then \(\rho \in BV(H, H_1) \) and \(V(\rho) = \|d\rho\|(H) \).

Theorem 1.4 Let \(\rho \in QR(H) \cap BV(H, H_1) \) and consider the measure \(\|d\rho\| \) and \(\sigma_\rho \) from Theorem 1.3(i). Then there is an \(E^\rho \)-exceptional set \(S \subset F \) such that \(\forall z \in F \setminus S \), under \(P_z \) there exists an \(\mathcal{M}_t \) -cylindrical Wiener process \(W^z \), such that the sample paths of the associated distorted
OU-process M^ρ on F satisfy the following: for $l \in D(A) \cap H_1$

$$
\langle l, X_t - X_0 \rangle = \int_0^t \langle l, dW^x_s \rangle + \frac{1}{2} \int_0^t H_l \langle l, \sigma(x_s) \rangle H_t dL^\rho_s - \int_0^t \langle A_l, X_s \rangle ds \ \forall t \geq 0 \ \text{P}_z\text{-a.s.}
$$

Here L^ρ_t is the real valued PCAF associated with $\|d\rho\|$ by the Revuz correspondence.

2. **Reflected OU process**—Consider the situation when $\rho = I_G$, the indicator of a set.

Remark 2.1 We emphasize that if Γ is a convex closed set in H, then for each $z, l \in H$ the set \{s $\in \mathbb{R}|z+sl \in \Gamma$\} is a closed interval in \mathbb{R}, whose indicator function hence trivially has the Hamza property. Hence, in particular, $I_G \in \mathcal{QR}(H)$.

2.1 **Reflected OU processes on regular convex set**—Denote the corresponding objects $\sigma_\rho, \|dI\|$ in Theorem 1.3(i) by $-n_\Gamma, \|\partial \Gamma\|$, respectively.

Hypothesis 2.1.1 There exists a convex C^∞ function $g: H \to \mathbb{R}$ with $g(0) = 0, g'(0) = 0$, and D^2g strictly positively definite, that is, $\langle D^2g(x)h, h \rangle \geq \gamma |h|^2, \forall h \in H$ where $\gamma > 0$, such that

$$
\Gamma = \{x \in H : g(x) \leq 1\}, \partial \Gamma = \{x \in H : g(x) = 1\}
$$

Moreover, we also suppose that D^2g is bounded on Γ. Finally, we also suppose that g and all its derivatives grow at infinity at most polynomially.

By using [2, Lemma 2.1], we have (1.1) for $\rho = I_G$ with $H = H_1$. By the continuity property of surface measure given in [5], we have the following two theorems.

Theorem 2.1.2 Assume Hypothesis 2.1.1. Then $I_G \in \mathcal{BV}(H, H) \cap \mathcal{QR}(H)$.

Theorem 2.1.3 Assume Hypothesis 2.1.1. Then there exists an \mathcal{E}^ρ-exceptional set $S \subset F$ such that $\forall z \in F \setminus S$, under P_z there exists an \mathcal{M}_Γ cylindrical Wiener process W^z, such that the sample paths of the associated reflected OU-process M^ρ on F with $\rho = I_G$ satisfy the following: for $l \in D(A) \cap H_1$

$$
\langle l, X_t - X_0 \rangle = \int_0^t \langle l, dW^x_s \rangle - \frac{1}{2} \int_0^t \langle l, n_\Gamma(X_s) dL^\rho_s \rangle - \int_0^t \langle A_l, X_s \rangle ds \ \forall t \geq 0 \ \text{P}_z\text{-a.e.}
$$

where $n_\Gamma := \frac{\partial \mu_\Gamma}{\partial \mathcal{P}_\Gamma}$ is the exterior normal to Γ, satisfying $\langle n_\Gamma(x), x - y \rangle \geq 0$, for any $y \in \Gamma, x \in \partial \Gamma$ and $\|\partial \Gamma\| = \mu_\Gamma$, where μ_Γ is the surface measure induced by μ (c.f [2], [5]).

Let G satisfy Hypothesis 2.1.1 and A satisfy Hypothesis 1.1. Consider the following stochastic differential inclusion in the Hilbert space H,

$$
\begin{cases}
 dX(t) + (AX(t) + N_G(X(t)))dt \ni dW(t),
 X(0) = x
\end{cases}
$$

(2.1)

where $W(t)$ is a cylindrical Wiener process in H on a filtered probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ and $N_G(x)$ is the normal cone to Γ at x.

Definition 2.1.4 A pair of continuous $H \times \mathbb{R}$ valued and \mathcal{F}_t-adapted processes $(X(t), L(t)), t \in [0, T]$, is called a solution of (2.1) if the following conditions hold:

(i) $X(t) \in \Gamma, P - a.s$, for all $t \in [0, T]$,

(ii) L is an increasing process with the property $\int_0^t I_{\partial \Gamma}(X_s(\omega)) dL_s(\omega) = L_t(\omega), t \geq 0$ and we have for any $l \in D(A), \langle l, X_t(\omega) - x \rangle = \langle l, W_t(\omega) - \int_0^t n_\Gamma(X_s(\omega)) dL_s(\omega) \rangle - \langle A_l, \int_0^t X_s(\omega) ds \rangle$ where n_Γ is the exterior normal to Γ, satisfying $\langle n_\Gamma(x), x - y \rangle \geq 0, \forall y \in \Gamma, x \in \partial \Gamma$.

3
Theorem 2.1.5 If Γ satisfies Hypothesis 2.1.1, then there exists $M, I_{\Gamma} \cdot \mu(M) = 1$, such that for every $x \in M$, (2.1) has a pathwise unique continuous strong solution in the sense of Definition 2.1.4, such that $X(t) \in M$ for all $t \geq 0$ P_{σ}-a.s.

Remark 2.1.6 We can extend all these results to non-symmetric Dirichlet forms obtained by first order perturbation of the above Dirichlet form.

2.2 Reflection OU processes on a class of convex sets——Now we consider the case when $H = L^2(0,1), \rho = I_{K_\alpha}$, where $K_\alpha = \{ f \in H | f \geq -\alpha \}, \alpha \geq 0$ and $A = -\frac{1}{2} \partial^2$ with Dirichlet boundary condition on $[0,1]$. Take $c_j = (j\pi)^{\frac{1}{2}+\varepsilon}$ if $\alpha > 0$, $c_j = (j\pi)^{\beta}$ if $\alpha = 0$, where $\varepsilon \in (0, \frac{3}{2}]$ and $\beta \in (\frac{1}{2}, 2]$ respectively. By using [8, (1) (2), Theorem 5], we can prove the following theorem.

Theorem 2.2.1 $I_{K_\alpha} \in BV(H, H_1) \cap QR(H)$.

Remark 2.2.2 It has been proved by Guan Qingyang that I_{K_α} is not in $BV(H, H)$. Since we have Theorem 2.2.1, we denote the corresponding objects $\sigma_{\alpha}, ||dI_{K_\alpha}||$ in Theorem 1.3 (i) by $n_{\alpha}, |\sigma_{\alpha}|$, respectively.

Theorem 2.2.3 Let $\rho = I_{K_\alpha}$. Then there is an E^ρ-exceptional set $S \subset F$ such that $\forall z \in F \setminus S$, under P_z there exists an \mathcal{M}_ε-cylindrical Wiener process W^z, such that the sample paths of the associated distorted OU-process M^ρ on F satisfy the following: for $l \in D(A) \cap H_1$

$$\langle l, X_t - X_0 \rangle = \int_0^t \langle l, dW_s \rangle + \frac{1}{2} \int_0^t \langle l, n_\alpha(X_s) \rangle_{H_1} dL_t^{\alpha, \rho} - \int_0^t \langle Al, X_s \rangle ds P_z - a.e.$$

Here, $L_t^{\alpha, \rho}(\omega)$ is a real valued PCAF associated with $|\sigma_\alpha|$ by the Revuz correspondence, satisfying

$I_{(X_t, \alpha=0)} dL_t^{\alpha, \rho} = 0$, and for every $z \in F, P_z[X_t \in C_0[0,1]] = 0$ for a.e. $t \in [0, \infty]$ = 1

Acknowledgement We thank Zhiming Ma for very helpful hints and comments.

References

[1] L. Ambrosio, G. Da Prato, D. Pallara, BV functions in a Hilbert space with respect to a Gaussian measure, preprint