Menu
Contact | A-Z
img

Prof. Dr. Claus Michael Ringel


Contact-Details:
eMail: ringel@math.uni-bielefeld.de


Recent Preprints

06016 Some Remarks concerning Tilting Modules and Tilted Algebras. Origin. Relevance. Future. PDF
06017 Foundation of the Representation Theory of Artin Algebras, Using the Gabriel-Roiter Measure PDF
06018 The Theorem of Bo Chen and Hall Polynomials PDF
07065 The First Brauer-Thrall Conjecture PDF
08005 A Partition Formula for Fibonacci Numbers PDF
09002 The global dimension of the endomorphism ring of a generator-cogenerator for a hereditary artin algebra PDF
09003 The self-injective cluster tilted algebras PDF
09004 The relevance and the ubiquity of Pruefer modules PDF
09005 Invariant subspaces of nilpotent operators I PDF
09006 The Auslander-Reiten Translation in Submodule Categories PDF
09007 The ladder construction of Pruefer modules PDF
09075 The $SL_3$-module $T (43)$ for $p = 3$. PDF
09076 Indecomposables live in all smaller lengths PDF
09077 Iyama’s finiteness theorem via strongly quasi-hereditary algebras PDF
09078 Gabriel-Roiter inclusions and Auslander-Reiten theory PDF
09079 Cluster-concealed algebras PDF
10068 Minimal infinite submodule-closed subcategories PDF
10073 Indecomposable representations of the Kronecker quivers PDF
11022 The Minimal Representation-Infinite Algebras which are Special Biserial PDF
11048 Cluster-additive functions on stable translation quivers PDF
11061 Categorification of the Fibonacci Numbers Using Representations of Quivers PDF
11062 On the representation dimension of artin algebras. PDF
11081 The Fibonacci partition triangles PDF
11106 Morphisms determined by objects: The case of modules over artin algebras PDF
11119 On radical square zero rings PDF
11127 Representations of quivers over the algebra of dual numbers PDF
12068 The Gorenstein projective modules for the Nakayama algebras PDF
12119 Distinguished bases of exceptional modules PDF
12127 From submodule categories to preprojective algebras PDF
13004 The Auslander bijections: How morphisms are determined by modules PDF

Back
© 2017–2018 Sonderforschungbereich 701 | Privacy Policy